【poj1087/uva753】A Plug for UNIX(最大流)

A Plug for UNIX
 

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4 
A 
B 
C 
D 
5 
laptop B 
phone C 
pager B 
clock B 
comb X 
3 
B X 
X A 
X D 

Sample Output

1



 

 

  最大流或者二分图匹配都能做。

  我做的是最大流~~
  建图->st连插头流量为这种插头数量
  插座连ed流量为这种插座的数量
  对于插头的转换,就在左边的图连x->y,流量为正无穷
  最后计算最大流。
  不会用map的我,搞编号搞了一辈子,呵呵~

 

代码如下:

  1 #include<cstdio>
  2 #include<cstdlib>
  3 #include<cstring>
  4 #include<iostream>
  5 #include<algorithm>
  6 #include<queue>
  7 using namespace std;
  8 #define INF 0xfffffff
  9 // #define Maxl 100010
 10 #define Maxn 510
 11 
 12 int n,m,k;
 13 
 14 struct node
 15 {
 16     int x,y,f,o,next;
 17 }t[Maxn*10*10];int len;
 18 int first[Maxn],st,ed;
 19 
 20 int mymin(int x,int y) {return x<y?x:y;}
 21 
 22 void ins(int x,int y,int f)
 23 {
 24     t[++len].x=x;t[len].y=y;t[len].f=f;
 25     t[len].next=first[x];first[x]=len;t[len].o=len+1;
 26     t[++len].x=y;t[len].y=x;t[len].f=0;
 27     t[len].next=first[y];first[y]=len;t[len].o=len-1;
 28 }
 29 
 30 int h[Maxn],num[Maxn];
 31 char c[Maxn],ss[Maxn],sh[5*Maxn][Maxn];
 32 
 33 void init()
 34 {
 35     scanf("%d",&n);
 36     memset(first,0,sizeof(first));
 37     len=0;int sl=0;
 38     for(int i=1;i<=n;i++)
 39     {
 40         scanf("%s",ss);sl++;
 41         memcpy(sh[sl],ss,sizeof(sh[sl]));
 42     }
 43     scanf("%d",&m);
 44     for(int i=1;i<=m;i++)
 45     {
 46         scanf("%s%s",c,ss);sl++;
 47         memcpy(sh[sl],ss,sizeof(sh[sl]));
 48     }
 49     scanf("%d",&k);
 50     for(int i=1;i<=k;i++) 
 51     {
 52         scanf("%s",ss);sl++;
 53         memcpy(sh[sl],ss,sizeof(sh[sl]));
 54         scanf("%s",ss);sl++;
 55         memcpy(sh[sl],ss,sizeof(sh[sl]));
 56     }
 57     
 58     st=1,ed=2;
 59     int p=2;
 60     for(int i=1;i<=sl;i++)
 61     {
 62         int id=-1;
 63         for(int j=1;j<i;j++)
 64         {
 65             if(strcmp(sh[i],sh[j])==0) {id=num[j];break;}
 66         }
 67         if(id==-1) id=++p;
 68         num[i]=id;
 69     }
 70     
 71     // printf("%d\n",p);
 72     
 73     memset(h,0,sizeof(h));
 74     for(int i=1;i<=n;i++) h[num[i]]++;
 75     for(int i=1;i<=p;i++) if(h[i])
 76     {
 77         ins(i,ed,h[i]);
 78         ins(i+p,i,INF);
 79         // ins(i+n+m,i,INF);
 80     }
 81     
 82     memset(h,0,sizeof(h));
 83     for(int i=1;i<=m;i++) h[num[i+n]]++;
 84     for(int i=1;i<=p;i++) if(h[i]) 
 85     {
 86         ins(st,i+p,h[i]);
 87         ins(i+p,i,INF);
 88     }
 89     
 90     for(int i=1;i<=k;i++)
 91     {
 92         ins(num[i*2-1+n+m]+p,num[i*2+n+m]+p,INF);
 93         // ins(num[i*2-1+n+m]+n+m,num[i*2+n+m],INF);
 94     }
 95     /*for(int i=1;i<=len;i+=2)
 96     {
 97         printf("%d -> %d :%d \n",t[i].x,t[i].y,t[i].f);
 98     }*/
 99 }
100 
101 int dis[Maxn];
102 queue<int > q;
103 bool bfs()
104 {
105     while(!q.empty()) q.pop();
106     memset(dis,-1,sizeof(dis));
107     q.push(st);dis[st]=0;
108     while(!q.empty())
109     {
110         int x=q.front();q.pop();
111         for(int i=first[x];i;i=t[i].next) if(t[i].f>0)
112         {
113             if(dis[t[i].y]==-1)
114             {
115                 q.push(t[i].y);
116                 dis[t[i].y]=dis[x]+1;
117             }
118         }
119     }
120     if(dis[ed]==-1) return 0;
121     return 1;
122 }
123 
124 int ffind(int x,int flow)
125 {
126     int now=0;
127     if(x==ed) return flow;
128     for(int i=first[x];i;i=t[i].next) 
129       if(t[i].f>0&&dis[t[i].y]==dis[x]+1)
130       {
131           int a=ffind(t[i].y,
132           mymin(flow-now,t[i].f));
133           now+=a;
134           t[i].f-=a;
135           t[t[i].o].f+=a;
136           if(now==flow) break;
137       }
138     if(now==0) dis[x]=-1;
139     return now;
140 }
141 
142 void max_flow()
143 {
144     int ans=0;
145     while(bfs()) ans+=ffind(st,INF);
146     printf("%d\n",m-ans);
147 }
148 
149 int main()
150 {
151     int T;
152     scanf("%d",&T);
153     while(T--)
154     {
155         init();
156         bfs();
157         max_flow();
158         if(T!=0) printf("\n");
159     }
160     return 0;
161 }
[UVA753]

 

2016-07-15 14:26:32

 

posted @ 2016-07-15 14:23  konjak魔芋  阅读(259)  评论(0编辑  收藏  举报