loj 6268 分拆数
令 $f_n$ 为将 $n$ 进行分拆的方案数
例如,$4=1+1+1+1=1+1+2=1+3=2+2$,则 $f(4) = 5$
求 $f(1) \sim f(n)$ 膜 $998244353$
$n \leq 100000$
sol:
因为 $1+x+x^2+x^3+...= \frac{1}{1-x}$
则答案的生成函数为 $\prod \frac{1}{1-x^i}$
这个东西可以考虑他的 $ln$
$ln(\frac{1}{1-x^i}) = \sum \frac{x^{i \times j}}{j}$
则 $ln(\prod \frac{1}{1-x^i}) = \sum \sum \frac{x^{i \times j}}{j}$(乘法就是指数上的加法)
$\sum \sum \frac{x^{i \times j}}{j}$ 可以直接枚举 $i$ 和 $i$ 的倍数来求,是 $O(nlogn)$ 的
然后直接多项式 exp
五边形数是啥,不会
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <bits/stdc++.h> #define LL long long #define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i) #define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i) using namespace std; inline int read() { int x = 0, f = 1; char ch; for (ch = getchar(); !isdigit(ch); ch = getchar()) if (ch == '-') f = -f; for (; isdigit(ch); ch = getchar()) x = 10 * x + ch - '0'; return x * f; } const int maxn = 600010, mod = 998244353; int F[maxn], G[maxn]; inline int skr(int x, int t) { int res = 1; for (; t; x = 1LL * x * x % mod, t >>= 1) if (t & 1) res = 1LL * res * x % mod; return res; } int r[maxn], lg[maxn], temp[maxn]; int inv[maxn], ifac[maxn], fac[maxn]; inline int skr(int x, LL t) { int res = 1; while (t) { if (t & 1) res = 1LL * res * x % mod; x = 1LL * x * x % mod; t = t >> 1; } return res; } inline void fft(int *a, int n, int type) { for (int i = 0; i < n; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (lg[n] - 1)); for (int i = 0; i < n; i++) if (i < r[i]) swap(a[i], a[r[i]]); for (int i = 1; i < n; i <<= 1) { int wn = skr(3, (mod - 1) / (i << 1)); if (type == -1) wn = skr(wn, mod - 2); // cout << wn << endl; for (int j = 0; j < n; j += (i << 1)) { int w = 1; for (int k = 0; k < i; k++, w = (1LL * (LL)w * (LL)wn) % mod) { int x = a[j + k], y = (1LL * (LL)w * (LL)a[j + k + i]) % mod; a[j + k] = (x + y) % mod; a[j + k + i] = (((x - y) % mod) + mod) % mod; } } } if (type == -1) { int inv = skr(n, mod - 2); for (int i = 0; i < n; i++) a[i] = ((LL)a[i] * (LL)inv) % mod; } } inline void Inverse(int *a, int *b, int n) { if (n == 1) { b[0] = skr(a[0], mod - 2); return; } Inverse(a, b, n >> 1); memcpy(temp, a, n * sizeof(int)); memset(temp + n, 0, n * sizeof(int)); fft(temp, n << 1, 1); fft(b, n << 1, 1); for (int i = 0; i < (n << 1); i++) b[i] = 1LL * b[i] * ((2LL - 1LL * temp[i] * b[i] % mod + mod) % mod) % mod; fft(b, n << 1, -1); memset(b + n, 0, n * sizeof(int)); } int c[maxn], d[maxn]; inline void Ln(int *a, int *b, int n) { Inverse(a, c, n); for (int i = 0; i < n - 1; ++i) d[i] = (LL)(i + 1) * a[i + 1] % mod; d[n - 1] = 0; fft(c, n << 1, 1); fft(d, n << 1, 1); for (int i = 0; i < (n << 1); ++i) c[i] = 1LL * d[i] * c[i] % mod; fft(c, (n << 1), -1); for (int i = 1; i < (n << 1); ++i) b[i] = 1LL * inv[i] * c[i - 1] % mod; b[0] = 0; for (int i = 0; i < (n << 1); ++i) c[i] = d[i] = 0; } int temp_w[maxn], temp_Ln[maxn]; inline void Exp(int *a, int *b, int n) { if (n == 1) { b[0] = 1; return; } Exp(a, b, n >> 1); memcpy(temp_w, b, sizeof(int) * n); memset(temp_w + n, 0, sizeof(int) * n); Ln(b, temp_Ln, n); for (int i = 0; i < n; i++) temp_Ln[i] = (mod + a[i] - temp_Ln[i]) % mod; (temp_Ln[0] += 1) %= mod; fft(temp_w, n << 1, 1); fft(temp_Ln, n << 1, 1); for (int i = 0; i < (n << 1); i++) temp_w[i] = 1LL * temp_w[i] * temp_Ln[i] % mod; fft(temp_w, n << 1, -1); memcpy(b, temp_w, n * sizeof(int)); memset(b + n, 0, n * sizeof(int)); memset(temp_w, 0, sizeof(int) * (n << 1)); memset(temp_Ln, 0, sizeof(int) * (n << 1)); } int main() { int n = read(); lg[0] = -1; rep(i, 1, 600000) lg[i] = lg[i >> 1] + 1; int len = 1; for(; len <= n; len <<= 1); inv[1] = ifac[0] = fac[0] = 1; rep(i, 1, len) { if (i != 1) inv[i] = -(LL)mod / i * inv[mod % i] % mod; inv[i] = ((inv[i] % mod) + mod) % mod; ifac[i] = (LL)ifac[i - 1] * inv[i] % mod; fac[i] = (LL)fac[i - 1] * i % mod; } rep(i, 1, n) rep(j, 1, n / i) F[i * j] = (F[i * j] + inv[j]) % mod; //rep(i, 1, n) cout << F[i] << " "; //cout << endl; Exp(F, G, len); rep(i, 1, n) cout << G[i] << '\n'; }