bzoj 4998 星球联盟
新技能 get √ :LCT 维护边双连通分量
这题题意就是动态加边,每次求边的两端是否在一个边双连通分量里,输出 "No" 或者边双连通分量的大小
可以用两个并查集分别记录连通性和双连通性,如果还没连通就是 "No" 并在 LCT 上连边,否则直接把这条链 split 出来查即可
注意 LCT 维护的是双连通分量,所以每次跳 fa 的时候不再是 fa,而是 fa 所在的双连通分量
#include <bits/stdc++.h> #define LL long long #define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i) #define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i) using namespace std; inline int read() { int x = 0,f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar())if(ch == '-') f = -f; for(; isdigit(ch); ch = getchar())x = 10 * x + ch - '0'; return x * f; } const int maxn = 200010; int par[maxn], par2[maxn], size[maxn], ans; inline int find(int x) {return x == par[x] ? x : par[x] = find(par[x]);} inline int find2(int x) {return x == par2[x] ? x : par2[x] = find2(par2[x]);} int n, m, p; #define ls ch[x][0] #define rs ch[x][1] int ch[maxn][2], fa[maxn], rev[maxn], st[maxn], top; inline int isroot(int x) { return ch[find(fa[x])][0] != x && ch[find(fa[x])][1] != x; } inline void pushdown(int x) { if(rev[x]) { swap(ls, rs); if(ls) rev[ls] ^= 1; if(rs) rev[rs] ^= 1; rev[x] = 0; } } inline void rotate(int x) { int y = find(fa[x]), z = find(fa[y]); int l = (ch[y][1] == x), r = l ^ 1; if(!isroot(y)) ch[z][ch[z][1] == y] = x; fa[x] = z; fa[ch[x][r]] = y; fa[y] = x; ch[y][l] = ch[x][r]; ch[x][r] = y; } inline void splay(int x) { st[top = 1] = x; for(int i=x;!isroot(i);i=find(fa[i])) st[++top] = find(fa[i]); for(int i=top;i;i--) pushdown(st[i]); //PUSHDOWN(x); //cout << x << endl; while(!isroot(x)) { int y = find(fa[x]), z = find(fa[y]); if(!isroot(y)) { if(ch[z][0] == y ^ ch[y][0] == x) rotate(x); else rotate(y); } rotate(x); } } inline void access(int x) { for(int y = 0; x; splay(x), rs = y, y = x, x = find(fa[x])); } inline void makeroot(int x) { access(x); splay(x); rev[x] ^= 1; } inline void link(int x, int y) { makeroot(x); fa[x] = y; } void dfs(int x, int pre) { if(!x) return; ans += size[x]; if(x != pre) size[pre] += size[x], par[x] = pre; dfs(ls, pre); dfs(rs, pre); } inline void lnk(int u, int v) { ans = 0; if(find2(u) != find2(v)) { par2[par2[u]] = par2[v]; //cout << u << " " << v << endl; link(u, v); } else { makeroot(u); access(v); splay(v); dfs(v, v); } } int main() { n = read(), m = read(), p = read(); rep(i, 1, n) size[i] = 1, par[i] = i, par2[i] = i; rep(i, 1, m) { int u = find(read()), v = find(read()); lnk(u, v); } rep(i, 1, p) { int u = find(read()), v = find(read()); lnk(u, v); printf(ans ? "%d\n" : "No\n", ans); } }