11-21

念念不忘 必有回响

A--多元线性回归的python实现

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

In [2]:

#创建一个矩阵
a = np.array([[1, 2], [3, 4]])
m = np.mat(a) 
m

[2]:

matrix([[1, 2],
        [3, 4]])
In [4]:
#矩阵运算回顾
# 矩阵转秩
m.T
# 矩阵乘法
m * m 
a * a
# 矩阵⾏列式
np.linalg.det(m)
# 求逆矩阵
m.I
#转换成array
m.A
#降维成一维
m.fattlen
Out[4]:
matrix([[-2. ,  1. ],
        [ 1.5, -0.5]])
 

假设输入数据为DataFrame格式,最后一列为标签值,在此基础上编写线性回归自定义函数(最小二乘)

In [ ]:
#矩阵公式
w=(x.T * x).I * X.T * y 
In [53]:
#根据最小二乘法推导得 w=(x.T * x).I * X.T * y 注:如果(x.T * X)不满足可逆性,那么最小二乘无解,另不满足凸函数,也无解
#又因为特征矩阵在存在多重共线性的情况下,特征矩阵不满足可逆性,所以在做回归之前,需要消除多重共线性
def standRegres(dataSet):
    #把DataFrame转换成array 在转换成matrix,因为DateFrame每一列数据可以不一样,不能直接计算,转换成matirx同时,数据格式也会统一
    xMat = np.mat(dataSet.iloc[:, :-1].values)
    yMat = np.mat(dataSet.iloc[:, -1].values).T
    xTx = xMat.T*xMat
    if np.linalg.det(xTx) == 0:#判断xTx是否是满秩矩阵,若不满秩,则⽆法对其进⾏求逆矩阵的操作
        print("This matrix is singular, cannot do inverse")
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws
#这⾥需要注意的是,当使⽤矩阵分解来求解多元线性回归时,必须添加⼀列全为1的列,⽤于表征线性⽅程截距b。

In [54]:

ex0 = pd.read_table('ex0.txt', header=None)
ex0.head()
Out[54]:
 012
0 1.0 0.067732 3.176513
1 1.0 0.427810 3.816464
2 1.0 0.995731 4.550095
3 1.0 0.738336 4.256571
4 1.0 0.981083 4.560815
In [55]:
ws = standRegres(ex0)
ws
#返回结果即为各列特征权重,其中数据集第⼀列值均为1,因此返回结果的第⼀个分量表示截距

Out[55]:

matrix([[3.00774324],
        [1.69532264]])
In [56]:
#可视化展示
yhat = ex0.iloc[:, :-1].values * ws
plt.plot(ex0.iloc[:, 1], ex0.iloc[:, 2], 'o')
plt.plot(ex0.iloc[:, 1], yhat)

Out[56]:

[<matplotlib.lines.Line2D at 0x215fd3146a0>]
 
 

模型评价指标残差平⽅和SSE

In [23]:
y = ex0.iloc[:, -1].values
yhat = yhat.flatten()
rss = np.power(yhat - y, 2).sum()
rss
Out[23]:
1.3552490816814904
In [26]:
#将SSE做一个封装
def sseCal(dataSet, regres):#设置参数为 数据集 与 回归方法
    n = dataSet.shape[0] 
    y = dataSet.iloc[:, -1].values
    ws = regres(dataSet)
    yhat = dataSet.iloc[:, :-1].values * ws
    yhat = yhat.reshape([n,])
    rss = np.power(yhat - y, 2).sum()
    return rss
 

In [29]:

sseCal(ex0,standRegres)
Out[29]:
1.3552490816814904
 

模型评价指标 决定系数R_square,决定系数分布在[0, 1]区间内,且越趋近于1,表明拟合程度越好。

In [21]:
sse = sseCal(ex0, standRegres) 
y = ex0.iloc[:, -1].values
sst = np.power(y - y.mean(), 2).sum()
1 - sse / sst

 

Out[21]:
0.9731300889856916
In [31]:
 
#封装R**2
2
def rSquare(dataSet, regres):#设置参数为 数据集 与 回归方法
    sse = sseCal(dataSet, regres) 
    y = dataSet.iloc[:, -1].values
    sst = np.power(y - y.mean(), 2).sum()
    return 1 - sse / sst

 

In [32]:
rSquare(ex0, standRegres)
Out[32]:
0.9731300889856916
 

线性回归的Scikit-Learn实现

In [60]:
from sklearn import linear_model
reg = linear_model.LinearRegression(fit_intercept=True)
reg.fit(ex0.iloc[:, :-1].values, ex0.iloc[:,-1].values)

Out[60]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [61]:
reg.coef_#返回系数
Out[61]:
array([0.        , 1.69532264])
In [62]:
reg.intercept_#返回截距
Out[62]:
3.0077432426975905

然后计算模型MSE和决定系数

In [63]:
from sklearn.metrics import mean_squared_error, r2_score
yhat = reg.predict(ex0.iloc[:, :-1])
mean_squared_error(y, yhat)
Out[63]:
0.006776245408407454
In [64]:
mean_squared_error(y, yhat)*ex0.shape[0]
Out[64]:
1.3552490816814908
In [65]:
r2_score(y, yhat)
Out[65]:
0.9731300889856916

posted on 2019-11-22 00:35  11-21  阅读(829)  评论(0编辑  收藏  举报

导航