ABC154F
考虑容斥,拆成四部分,每部分都形如
\[\sum_{i=0}^n\sum_{j=0}^mf(i,j)
\]
其中 \(f(i,j)\) 表示从 \((0,0)\) 走到 \((i,j)\) 的方案数,显然为 \(\dbinom{i+j}{i}\)。
而
\[\sum_{j=0}^m f(i,j)=f(i+1,m)
\]
这个东西放到坐标系上很直观,每条走到 \((i+1,m)\) 的路径都可以被划分成某条走到 \((i,j)\) 的路径,然后向右走一步,之后一直向上走到 \((i+1,m)\)。
同理
\[\sum_{i=0}^nf(i,j)=f(n,j+1)
\]
因此
\[\sum_{i=0}^n\sum_{j=0}^mf(i,j)=\sum_{i=0}^nf(i+1,m)
\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=1}^{n+1}f(i,m)
\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =f(n+1,m+1)-f(0,m+1)
\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =f(n+1,m+1)-1
\]
Code:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2000005, mod = 1e9 + 7;
int l1, r1, l2, r2;
int fac[N], inv[N];
int qpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % mod;
x = 1ll * x * x % mod;
y >>= 1;
}
return res;
}
void init(int n) {
fac[0] = 1;
for (int i = 1; i <= n; ++i) fac[i] = 1ll * fac[i - 1] * i % mod;
inv[n] = qpow(fac[n], mod - 2);
for (int i = n - 1; ~i; --i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
}
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return 1ll * fac[n] * inv[n - m] % mod * inv[m] % mod;
}
int f(int x, int y) {
return C(x + y, x);
}
int solve(int x, int y) {
return (f(x + 1, y + 1) - 1 + mod) % mod;
}
void add(int &a, int b) {
a += b;
if (a >= mod) a -= mod;
}
void sub(int &a, int b) {
a -= b;
if (a < 0) a += mod;
}
int main() {
init(N - 1);
scanf("%d%d%d%d", &l1, &r1, &l2, &r2);
int ans;
add(ans, solve(l2, r2)), sub(ans, solve(l1 - 1, r2)), sub(ans, solve(l2, r1 - 1)), add(ans, solve(l1 - 1, r1 - 1));
printf("%d", ans);
return 0;
}