ABC227F

设一条路径上的权值从大到小依次为 \(w_1,w_2,\cdots,w_p\),其中 \(p=n+m-1\),那么它的答案是 \(\sum_{i=1}^k w_i\)

\(w_i\gets \max(0,w_i-w_k)\),那么 \(\sum w_i+kw_k\) 即为答案。

可以考虑暴力枚举权值 \(x\) 并令 \(w_i\gets \max(0,w_i-x)\),然后 DP,将其值增加 \(kx\) 并更新答案,这样一定会考虑到最优答案。如何证明不会枚举到不合法的情况?

  • \(x\lt w_k\),那么 \(\sum_{i=1}^p\max(0,w_i-x)+kx= \sum_{i=1}^kw_i+\sum_{i=k+1}^p \max(0,w_i-x)\ge \sum_{i=1}^kw_i\)
  • \(x\gt w_k\),那么 \(\sum_{i=1}^p\max(0,w_i-x)+kx=\sum_{i=1}^k\max(0,w_i-x)+kx\ge\sum_{i=1}^kw_i\)

故不合法的路径不会更新答案。

时间复杂度 \(\mathcal O(n^2m^2)\)

Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 35;
const ll inf = 0x3f3f3f3f3f3f3f3f;
int n, m, k;
int a[N][N];
ll f[N][N];

ll solve(int x) {
	memset(f, 0x3f, sizeof f), f[1][0] = f[0][1] = 0;
	for (int i = 1; i <= n; ++i)
		for (int j = 1; j <= m; ++j) {
			f[i][j] = min(f[i - 1][j], f[i][j - 1]);
			if (a[i][j] >= x) f[i][j] += a[i][j] - x;
		}
	return f[n][m] + 1ll * k * x;
}

int main() {
	scanf("%d%d%d", &n, &m, &k);
	for (int i = 1; i <= n; ++i)
		for (int j = 1; j <= m; ++j)
			scanf("%d", &a[i][j]);
	ll ans = inf;
	for (int i = 1; i <= n; ++i)
		for (int j = 1; j <= m; ++j)
			ans = min(ans, solve(a[i][j]));
	printf("%lld", ans);
	return 0;
}
posted @ 2022-10-23 09:38  Kobe303  阅读(28)  评论(0编辑  收藏  举报