(字符串动态规划)一个字符串变成另一个字符串的步骤数

  • 题目:
    给定两个字word1和word2,找到将word1转换为word2所需的最小步骤数。 (每个操作计为1步)。
    
    您对单词允许以下3种操作:
    
    a)插入字符
    b)删除字符
    c)替换字符

     

  • 思路:

    dp[i][j]指把word1[0..i - 1]转换为word2[0..j - 1] 的最小操作数。

    边界条件:

    dp[i][0] = i; 从长度为 i 的字符串转为空串 要删除 i 次
    dp[0][j] = j. 从空串转为长度为 j 的字符串 要添加 j 次

    一般情况:

    如果word[i - 1] == word2[j - 1],则dp[i][j] = dp[i - 1][j - 1],因为不需要进行操作,即操作数为0.

    如果word[i - 1] != word2[j - 1],则需考虑三种情况,取最小值:

    Replace word1[i - 1] by word2[j - 1]: (dp[i][j] = dp[i - 1][j - 1] + 1 (for replacement));
    Delete word1[i - 1]:                             (dp[i][j] = dp[i - 1][j] + 1 (for deletion));
    Insert word2[j - 1] to word1[0..i - 1]:   (dp[i][j] = dp[i][j - 1] + 1 (for insertion)).



  • 代码
    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int row = word1.size();
            int col = word2.size();
            vector<vector<int> >dp(row+1, vector<int>(col+1, 0));
            
            for (int i=1; i<=row; i++)
                dp[i][0] = i;//从长度为i的字符串到空串需要变换i次
            for (int j=1; j<=col; j++)
                dp[0][j] = j;//从长度为kong的字符串到长度为j的字符串需要变换j次
            
            for (int i=1; i<=row; i++){
                for (int j=1; j<=col; j++){
                    if (word1[i-1] == word2[j-1])
                        dp[i][j] = dp[i-1][j-1];
                    else
                        dp[i][j] = min(min(dp[i-1][j-1]+1,dp[i-1][j] +1), dp[i][j-1]+1 );
                }
            }
            return dp[row][col];
        }
    };

     

posted @ 2017-02-04 17:05  Kobe10  阅读(6677)  评论(0编辑  收藏  举报