科研画图:散点连接并平滑(基于Matlab和Python)
导师要求参照别人论文中的图(下图),将其论文中的图画美观些,网上关于科研画图相关的代码比较少,就自己鼓捣了下。
附上自己整合验证过的代码:
功能:将散点连接并平滑
1)Matlab
效果图:
x1=[431.50032,759.5552,1335.3736,2530.388] %输入以下三组数据 y1=[34.06366,35.73132,37.2244,38.61294] x2=[263.8656,458.7952,839.6584,1740.9088] y2=[33.5318074,35.1415668,36.8603528,38.244926] x3=[253.91296,441.854,803.4116,1625.2548] y3=[34.3625,35.88912,37.5403,38.45364] a=linspace(min(x1),max(x1)); %插值后将散点连线平滑化 b=interp1(x1,y1,a,'cubic'); c=linspace(min(x2),max(x2)); d=interp1(x2,y2,c,'cubic'); e=linspace(min(x3),max(x3)); f=interp1(x3,y3,e,'cubic'); plot(a,b, 'LineWidth',2, 'LineSmoothing', 'on'); %画ab对应曲线,粗细,平滑 hold on plot(c,d, 'LineWidth',2, 'LineSmoothing', 'on'); %画cd对应曲线,粗细,平滑 hold on plot(e,f, 'LineWidth',2, 'LineSmoothing', 'on'); %画ef对应曲线,粗细,平滑 axis([0,3000,33,39]) %确定x轴与y轴框图大小 legend({'MRMV','MVDM','MVLL'},'FontSize',13,'Location','southeast','Orientation','vertical') %题注设置:名称,字号,位置,方向 xlabel('Bit rates(kbps)','FontSize',13,'FontWeight','bold') %x轴设置:标题,字号,字体粗细 ylabel('PSNR(dB)','FontSize',13,'FontWeight','bold') %y轴设置:名称,字号,字体粗细 title('Balloons','FontSize',15,'FontWeight','bold') %标题描述,名称,字号,字体粗细 set(gca,'ygrid','on','gridlinestyle','--','Gridalpha',0.3) %网格设置 grid on; %网格 print(gcf, '-dpng', '-r800', 'C:\Users\Administrator\Desktop\test.png') %保存图片,格式为png,分辨率800,保存路径
2)Python
小问题:翘尾问题需要解决
# author: Kobay time:2019/10/18 import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import spline x1 = np.array([431.50032,759.5552,1335.3736,2530.388]) y1 = np.array([34.06366,35.73132,37.2244,38.61294]) x2 = np.array([263.8656,458.7952,839.6584,1740.9088]) y2 = np.array([33.5318074,35.1415668,36.8603528,38.244926]) x3 = np.array([253.91296,441.854,803.4116,1625.2548]) y3 = np.array([34.3625,35.88912,37.5403,38.45364]) x1_new = np.linspace(x1.min(), x1.max()) # 300 represents number of points to make between T.min and T.max y1_smooth = spline(x1, y1, x1_new) x2_new = np.linspace(x2.min(), x2.max(), 3000) # 300 represents number of points to make between T.min and T.max y2_smooth = spline(x2, y2, x2_new) x3_new = np.linspace(x3.min(), x3.max(), 3000) # 300 represents number of points to make between T.min and T.max y3_smooth = spline(x3, y3, x3_new) # 散点图 plt.scatter(x1, y1, c='black', alpha=0.5) # alpha:透明度) c:颜色 # 折线图 plt.plot(x1, y1, linewidth=1) # 线宽linewidth=1matl # 平滑后的折线图 plt.plot(x1_new, y1_smooth, c='blue',label='MRMV') plt.plot(x2_new, y2_smooth, c='orange',label='MVDM') plt.plot(x3_new, y3_smooth, c='gray',label='MVLL') # 解决中文显示问题 # plt.rcParams['font.sans-serif'] = ['SimHei'] # SimHei黑体 # plt.rcParams['axes.unicode_minus'] = False plt.title("Balloons", fontdict={'family' : 'Calibri', 'size': 16,'weight':'bold'}) # 标题及字号 plt.xlabel("Bit rates(kbps)", fontdict={'family' : 'Calibri', 'size': 14,'weight':'bold'}) # X轴标题及字号 plt.ylabel("PSNR(dB)", fontdict={'family' : 'Calibri', 'size': 14,'weight':'bold'}) # Y轴标题及字号 plt.tick_params(axis='both', labelsize=14) # 刻度大小 plt.axis([0, 3000, 33, 39])#设置坐标轴的取值范围 plt.grid(linestyle='-.') plt.legend(loc=4) plt.show() # plt.save('squares_plot.png'(文件名), bbox_inches='tight'(将图表多余的空白部分剪掉)) # 用它替换plt.show实现自动保存图表
码字不易,如果您觉得有帮助,麻烦点个赞再走呗~