[算法之美笔记01] 数组,链表的删除和垃圾回收,缓存机制有什么关系

本系列是对王争大佬的《数据结构和算法之美》学习笔记

为了在今后的学习途中, 也要持续巩固自己的数据结构与算法基础

没想到基于数组元素的删除这种我之前不屑于仔细斟酌的点, 竟然可以引申出一些底层的垃圾回收原理

没想到链表的增删可以拿来实现缓存机制

..

好吧..实在是太多了

后序会补上一些代码实现的


目录

数组中元素的删除与 JVM 标记清除垃圾回收

使用数组or容器

为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始

基于链表实现 LRU 缓存淘汰算法的思路



数组中元素的删除与 JVM 标记清除垃圾回收

数组 a 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。

为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并没有真正地移除,只是记录了"数据已经被删除"的标记。当数组存储空间不足时,再执行一次真正的删除,这样就大大减少了删除操作导致的数据搬移。

如果你了解 JVM,你会发现,这不就是 JVM 标记清除垃圾回收算法的核心思想吗?

JVM垃圾回收之标记清除法_yanghenan19870513的专栏-CSDN博客_jvm 标记清除法https://blog.csdn.net/yanghenan19870513/article/details/92079716

使用数组or容器

ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等。另外,它还有一个优势,就是支持动态扩容

是不是数组就无用武之地了呢?当然不是,有些时候,用数组会更合适些,我总结了几点自己的经验。1.Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。

2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。

3. 当要表示多维数组时,用数组往往会更加直观。比如 Object[][] array;而用容器的话则需要这样定义:ArrayList > array。

对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。

为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始

一方面,从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,

如果用 a 来表示数组的首地址,a[0]就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k]的内存地址只需要用这个公式:

a[k]_address = base_address + k * type_size

但是,如果数组从 1 开始计数,那我们计算数组元素 a[k]的内存地址就会变为:

a[k]_address = base_address + (k-1)*type_size

对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。

另一方面, 也有历史原因

阿橋问题 - 维基百科,自由的百科全书 (wikipedia.org)https://zh.wikipedia.org/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%E6%96%AF%E9%97%AE%E9%A2%98

数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。

数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。

链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。你可能会说,我们 Java 中的 ArrayList 容器,也可以支持动态扩容啊?

当我们往支持动态扩容的数组中插入一个数据时,如果数组中没有空闲空间了,就会申请一个更大的空间,将数据拷贝过去,而数据拷贝的操作是非常耗时的。我举一个稍微极端的例子。如果我们用 ArrayList 存储了了 1GB 大小的数据,这个时候已经没有空闲空间了,当我们再插入数据的时候,ArrayList 会申请一个 1.5GB 大小的存储空间,并且把原来那 1GB 的数据拷贝到新申请的空间上。听起来是不是就很耗时?

除此之外,如果你的代码对内存的使用非常苛刻,那数组就更适合你。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,如果是 Java 语言,就有可能会导致频繁的 GC(Garbage Collection,垃圾回收)。所以,在我们实际的开发中,针对不同类型的项目,要根据具体情况,权衡究竟是选择数组还是链表。

补充: CPU在从内存读取数据的时候,会先把读取到的数据加载到CPU的缓存中。而CPU每次从内存读取数据并不是只读取那个特定要访问的地址,而是读取一个数据块(这个大小我不太确定。。)并保存到CPU缓存中,然后下次访问内存数据的时候就会先从CPU缓存开始查找,如果找到就不需要再从内存中取。这样就实现了比内存访问速度更快的机制,也就是CPU缓存存在的意义:为了弥补内存访问速度过慢与CPU执行速度快之间的差异而引入。

对于数组来说,存储空间是连续的,所以在加载某个下标的时候可以把以后的几个下标元素也加载到CPU缓存这样执行速度会快于存储空间不连续的链表存储。 

基于链表实现 LRU 缓存淘汰算法的思路

思路是这样的:我们维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。

2. 如果此数据没有在缓存链表中,又可以分为两种情况:如果此时缓存未满,则将此结点直接插入到链表的头部;如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。这样我们就用链表实现了一个 LRU 缓存,是不是很简单?

现在我们来看下缓存访问的时间复杂度是多少。因为不管缓存有没有满,我们都需要遍历一遍链表,所以这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。

利用哨兵简化编程难度的技巧,在很多代码实现中都有用到,比如用来简化链表操作的首节点, 插入排序、归并排序、动态规划等

posted @ 2021-11-25 23:05  泥烟  阅读(182)  评论(0编辑  收藏  举报