POJ-3280

Cheapest Palindrome
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10301   Accepted: 4931

Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M 
Line 2: This line contains exactly M characters which constitute the initial ID string 
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

题意:

有一个长度为m的字符串,其中有n个不同的字母,每个字母有自己的添加和删除的花费,求如何增删字母,可以使字符串变为回文串且花费最小。

 

对于一个字母来说,增和删的效果是一样的,所以可将它的花费看做增删的最小值。

设dp[i][[j]为i~j区间内字母变为回文的最小花费,则它只由dp[i+1][j]+cost[i]和dp[i][j-1]+cost[j]决定。

当s[i]==s[j]时,dp[i][j]=dp[i+1][j-1]。则dp[i][j]为两者之间的最小值。

 

AC代码:

 1 //#include<bits/stdc++.h>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 using namespace std;
 7 
 8 const int MAXN=2010;
 9 
10 int dp[MAXN][MAXN];
11 int cost[30];
12 
13 int cmp(int a,int b){
14     if(a>b)
15     a=b;
16     return a;
17 }
18 
19 int main(){
20     ios::sync_with_stdio(false);
21     int n,m;
22     string s;
23     char c;
24     while(cin>>n>>m&&n&&m){
25         cin>>s;
26         int x,y;
27         for(int i=0;i<n;i++){
28             cin>>c>>x>>y;
29             cost[c-'a']=min(x,y);
30         }
31         memset(dp,0,sizeof(dp));
32         for(int i=m-2;i>=0;i--){
33             for(int j=i+1;j<m;j++){
34                 dp[i][j]=cmp(dp[i+1][j]+cost[s[i]-'a'],dp[i][j-1]+cost[s[j]-'a']);
35                 if(s[i]==s[j]){
36                     dp[i][j]=cmp(dp[i+1][j-1],dp[i][j]);
37                 }
38             }
39         }
40         cout<<dp[0][m-1]<<endl;
41     }
42     return 0;
43 }

 

posted @ 2017-08-16 16:19  Kiven#5197  阅读(175)  评论(0编辑  收藏  举报