CF-798C

C. Mike and gcd problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

 is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

Input

The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

Output

Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

Examples
input
2
1 1
output
YES
1
input
3
6 2 4
output
YES
0
input
2
1 3
output
YES
1
Note

In the first example you can simply make one move to obtain sequence [0, 2] with .

In the second example the gcd of the sequence is already greater than 1.

 

 

题意:

对于给定字符串,我们可将其相邻的两个字符做以下操作:

num[i],num[i+1]  ->  num[i]-num[i+1],num[i]+num[i+1]

由此可得,变换两次得:-2num[i+1],2num[i]

因为所有数均可转换为偶数,所以结果不可能为“NO”。

当相邻两数均为奇数时,只进行一次变换就可将它们全部变换为偶数;

当相邻数一奇一偶时,只要进行两次就可转换为偶数。

 

AC代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 
 4 long long num[100010];
 5 int n;
 6 
 7 int gcd(long long a,long long b){
 8     if(b==0){
 9         return abs(a);
10     }
11     return gcd(b,a%b);
12 }
13 
14 int main(){
15     cin>>n;
16     for(int i=0;i<n;i++){
17         cin>>num[i];
18     }
19     long long ans=0;
20     for(int i=0;i<n;i++){
21         ans=gcd(ans,num[i]);
22     }
23     if(ans>1){
24         cout<<"YES"<<endl<<0<<endl;
25         return 0;
26     }
27     ans=0;
28     for(int i=0;i<n-1;i++){
29         if(num[i]&1&&num[i+1]&1){
30             ans++;
31             num[i]=2;
32             num[i+1]=2;
33         }
34     }
35     for(int i=0;i<n;i++){
36         if(num[i]&1){
37             ans+=2;
38         }
39     }
40     cout<<"YES"<<endl<<ans<<endl;
41     
42     return 0;
43 } 

 

posted @ 2017-04-26 20:37  Kiven#5197  阅读(1295)  评论(0编辑  收藏  举报