模板 - 数学 - 同余 - 扩展Euclid算法

普通的扩展欧几里得算法,通过了洛谷的扩展欧几里得算法找乘法逆元。修复了容易溢出的bug,虽然新版本仍有可能会溢出longlong,假如参与运算的数字都是longlong,假如可以的话直接使用__int128或者去抄一个RoundGod的BigInt的模板(这里的C题)。事不宜迟明天就抄这个大数模板。
求解模n意义下a的逆元,即求方程LCE2(a,1,n,x),结果放入x中,返回值指示是否有解。

ll gcd(ll a, ll b) {
    if(b == 0)
        return a;
    while(ll t = a % b)
        a = b, b = t;
    return b;
}

ll ex_gcd(ll a, ll b, ll& x, ll& y) {
    if(b == 0) {
        x = 1, y = 0;
        return a;
    }
    ll d = ex_gcd(b, a % b, x, y), t;
    t = x, x = y, y = t - a / b * y;
    return d;
}

//解线性同余方程 ax + by = c ,无解返回false
bool LCE1(ll a, ll b, ll c, ll &x0, ll &y0) {
    ll x, y, d = ex_gcd(a, b, x, y);
    if(c % d)
        return false;
    ll k = b / gcd(a, b);
    x0 = ((x % k) * (c / d % k) % k + k) % k;
    y0 = (c - a * x0) / b;
    //x0是x的最小非负整数解
    //x=x0+b*t,y=y0-a*t,是方程的所有解,对所有整数t成立
    return true;
}

//解线性同余方程 ax = b mod n ,无解返回false
//和方程 ax + ny = b 等价
bool LCE2(ll a, ll b, ll n, ll &x0) {
    ll x, y;
    if(LCE1(a, n, b, x, y)) {
        ll k = n / gcd(a, n);
        x0 = (x % k + k) % k;
        //x0是最小非负整数解
        //x=x0+k*t,是方程的所有解,对所有整数t成立
        return true;
    } else
        return false;
}

未修复的版本理论上会快一点常数,没必要。但是还是做个提醒:

//解线性同余方程 ax + by = c ,无解返回false
bool LCE1(ll a, ll b, ll c, ll &x0, ll &y0) {
    ll x, y, d = ex_gcd(a, b, x, y);
    if(c % d)
        return false;
    ll k = c / d;
    x0 = x * k;
    y0 = y * k;
    //x=x0+b*t,y=y0-a*t,是方程的所有解,对所有整数t成立
    return true;
}
posted @ 2019-11-18 23:45  KisekiPurin2019  阅读(228)  评论(0编辑  收藏  举报