模板 - 图论 - 强连通分量 - Kosaraju算法
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点。
算法复杂度:
Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m)
强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m)
对边排序去重:复杂度O(n+mlogm)
注意:
1、最好先 Init() ,然后再 AddEdge()
2、维护缩点时点的性质对新点的影响在 dfs2() 中进行
3、维护缩点时边的性质对新点的影响在 Build() 中进行,特别注意缩点之后的自环
4、并不是每道题都需要原图反图,也并不是都需要对边进行去重
Kosaraju算法缩点的结果本身就是按拓扑序排列的。
namespace SCC {
int n;
vector<int> G[MAXN + 5], BG[MAXN + 5];
int c1[MAXN + 5], cntc1;
int c2[MAXN + 5], cntc2;
int s[MAXN + 5], cnts;
int n2;
vector<int> V2[MAXN + 5];
vector<int> G2[MAXN + 5], BG2[MAXN + 5];
void Init(int _n) {
n = _n;
cntc1 = 0, cntc2 = 0, cnts = 0;
for(int i = 1; i <= n; ++i) {
G[i].clear();
BG[i].clear();
c1[i] = 0;
c2[i] = 0;
s[i] = 0;
V2[i].clear();
G2[i].clear();
BG2[i].clear();
}
return;
}
void AddEdge(int u, int v) {
G[u].push_back(v);
BG[v].push_back(u);
return;
}
void dfs1(int u) {
c1[u] = cntc1;
for(auto &v : G[u]) {
if(!c1[v])
dfs1(v);
}
s[++cnts] = u;
}
void dfs2(int u) {
V2[cntc2].push_back(u);
c2[u] = cntc2;
for(auto &v : BG[u]) {
if(!c2[v])
dfs2(v);
}
return;
}
void Kosaraju() {
for(int i = 1; i <= n; ++i) {
if(!c1[i]) {
++cntc1;
dfs1(i);
}
}
for(int i = n; i >= 1; --i) {
if(!c2[s[i]]) {
++cntc2;
dfs2(s[i]);
}
}
return;
}
void Build() {
n2 = cntc2;
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
for(auto &v : G[u]) {
if(c2[v] != i) {
G2[i].push_back(c2[v]);
BG2[c2[v]].push_back(i);
}
}
}
}
for(int i = 1; i <= n2; ++i) {
sort(G2[i].begin(), G2[i].end());
G2[i].erase(unique(G2[i].begin(), G2[i].end()), G2[i].end());
sort(BG2[i].begin(), BG2[i].end());
BG2[i].erase(unique(BG2[i].begin(), BG2[i].end()), BG2[i].end());
}
return;
}
void Solve() {
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
//把原图的信息传递给新图;
}
}
//在新图上Solve;
return;
}
}
好像在不开O2的情况下这个vector版的比链式前向星版的费多了很多时间。
使用方法:
- Init,传入原图的点数。
- 使用AddEdge逐个加入有向边。
- 调用Kosaraju划分强连通分量(V2存储强连通缩点后的新点包含原图的哪些点,c2存储原图的点对应强连通缩点后的哪个新点)。
- 调用Build在强连通缩点之后的新点之间建立新边到G2,并排序去重。
- 在Solve中书写在DAG中求解的代码,例如先把原图的点的信息传递给强连通缩点后的新点,然后在DAG上dp(注意是使用G2)。