CodeForces 838A Binary Blocks(前缀和)题解

题意:给你个n*m的矩阵,要求你找到一个k,k > 1,使得矩阵可以分为很多k * k的小正方形,然后进行操作把每个小正方形都变为0或1,问你怎样使操作数最小。

思路:随便暴力不可取,显然你每次遍历查找k * k正方形里1和0的数量会超时。这里新学了一招前缀和,其实和二位树状数组差不多。就是预处理前缀和,以达到花O(1)的时间算出(1,1)~(x,y)的和,这样我们就能直接暴力枚举每一种k的操作数,然后取最小即为答案。

参考:前缀和与差分

代码:

#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
#define ull unsigned long long
using namespace std;
const int maxn = 5000+5;
const int seed = 131;
const int MOD = 100013;
const int INF = 0x3f3f3f3f;
int sum[maxn][maxn];
char s[maxn];
int get(int x1,int y1,int x2,int y2){
    return sum[x2][y2] - sum[x2][y1 - 1] - sum[x1 - 1][y2] + sum[x1 - 1][y1 - 1];
}
int main(){
    int n,m,k,end;
    scanf("%d%d",&n,&m);
    end = max(n,m);
    memset(sum,0,sizeof(sum));
    for(int i = 1; i <= n; i++){
        scanf("%s",s + 1);
        for(int j = 1; j <= m; j++){
            sum[i][j] = s[j] - '0';
        }
    }
    for(int i = 1;i < maxn;i++){  //前缀和
        for(int j = 1;j < maxn;j++){
            sum[i][j] += sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1];
        }
    }
    int ans = INF;
    for(int k = 2; k <= end; k++){
        int cnt = 0,endL,endR;
        if(n % k == 0) endL = n;
        else endL = (n / k + 1) * k;
        if(m % k == 0) endR = m;
        else endR = (m / k + 1) * k;

        for(int i = 1; i <= endL; i += k){
            for(int j = 1; j <= endR; j += k){
                int have = get(i,j,i + k - 1,j + k - 1);
                cnt += min(have,k * k - have);
            }
        }
        ans = min(ans,cnt);
    }
    printf("%d\n",ans);
    return 0;
}

 

posted @ 2018-08-22 21:32  KirinSB  阅读(341)  评论(0编辑  收藏  举报