POJ 3159 Candies(差分约束+最短路)题解

题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少

思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa的松弛条件相对应,所以我们建一条a到b的边,权值c,然后跑最短路,求出所有差值最大的那个即为答案。应该算是基础的线性差分约束题。

ps:队列超时,这里用栈。

关于差分约束可以点这里

#include<cstdio>
#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 30000+10;
const int INF = 0x3f3f3f3f;
struct Edge{
    int v,cost,next;
}edge[1500000];
int head[maxn],tot;
void init(){
    tot = 0;
    memset(head,-1,sizeof(head));
}
void addEdge(int u,int v,int cost){
    edge[tot].v = v;
    edge[tot].cost = cost;
    edge[tot].next = head[u];
    head[u] = tot++;
}
bool vis[maxn];
int cnt[maxn];
int dist[maxn];
bool spfa(int start,int n){
    memset(vis,false,sizeof(vis));
    for(int i = 1;i <= n;i++)
        dist[i] = INF;
    vis[start] = true;
    dist[start] = 0;
    stack<int> q;
    while(!q.empty()) q.pop();
    q.push(start);
    memset(cnt,0,sizeof(cnt));
    cnt[start] = 1;
    while(!q.empty()){
        int u = q.top();
        q.pop();
        vis[u] = false;
        for(int i = head[u];i != -1;i = edge[i].next){
            int v = edge[i].v;
            if(dist[v] > dist[u] + edge[i].cost){
                dist[v] = dist[u] + edge[i].cost;
                if(!vis[v]){
                    vis[v] = true;
                    q.push(v);
                    if(++cnt[v] > n) return false;
                }
            }
        }
    }
    return true;
}
int main(){
    int n,m;
    init();
    int a,b,c;  // b - a <= c : when b > a + c then change
    scanf("%d%d",&n,&m);
    while(m--){
        scanf("%d%d%d",&a,&b,&c);
        addEdge(a,b,c);
    }
    spfa(1,n);
    int Max = 0;
    for(int i = 2;i <= n;i++){
        if(dist[i] < INF) Max = max(Max,dist[i]);
    }
    printf("%d\n",Max);
    return 0;
}

 

posted @ 2018-08-16 10:17  KirinSB  阅读(228)  评论(0编辑  收藏  举报