Bi-shoe and Phi-shoe(欧拉函数/素筛)题解
Bi-shoe and Phi-shoe
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
InputInput starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
OutputFor each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
Sample OutputCase 1: 22 Xukha
Case 2: 88 Xukha
Case 3: 4 Xukha
题意:给你n个欧拉函数值,找出每一个欧拉函数值大于等于所给值的数,并且相加和最小
思路1:用筛法求1~N的欧拉函数,然后打表每个欧拉函数值的最优解,再取和最小
思路2:因为对于素数Φ(N)=N-1,所以给出p只要找出大于等于p+1的素数即可,用素筛
参考:很详细的欧拉函数解释
代码1:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
//#include<map>
#include<string>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
const int N=1000100;
const int MOD=1000;
using namespace std;
int euler[N];
int ans[N];
void init(){
memset(ans,-1,sizeof(ans));
for(int i=0;i<N;i++){
euler[i]=i;
}
for(int i=2;i<N;i++){
if(euler[i]==i){
for(int j=i;j<N;j+=i){
euler[j]=euler[j]/i*(i-1); //f(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)
}
}
}
int now=0;
for(int i=2;i<N;i++){ //1不符合
if(euler[i]>now && ans[euler[i]]==-1){
ans[euler[i]]=i;
now=euler[i];
}
}
}
int main(){
int T,t,n;
init();
scanf("%d",&T);
for(t=1;t<=T;t++){
scanf("%d",&n);
long long sum=0;
while(n--){
int p;
scanf("%d",&p);
for(int i=p;;i++){
if(ans[i]!=-1){
sum+=ans[i];
break;
}
}
}
printf("Case %d: %lld Xukha\n",t,sum);
}
return 0;
}
代码2:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
//#include<map>
#include<string>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
const int N=1000100;
const int MOD=1000;
using namespace std;
int prime[N];
void init(){
memset(prime,0,sizeof(prime));
prime[0]=prime[1]=1;
for(int i=2;i<N;i++){
if(!prime[i]){
for(int j=i*2;j<N;j+=i){
prime[j]=1;
}
}
}
}
int main(){
int T,t,n;
init();
scanf("%d",&T);
for(t=1;t<=T;t++){
scanf("%d",&n);
long long sum=0;
while(n--){
int p;
scanf("%d",&p);
p++;
while(prime[p]!=0){
p++;
}
sum+=p;
}
printf("Case %d: %lld Xukha\n",t,sum);
}
return 0;
}