POJ 2923 Relocation(状压DP+01背包)题解
题意:给你汽车容积c1,c2,再给你n个包裹的体积,问你最少运几次能全运走
思路:用2进制表示每次运送时某物在不在此次运送之中,1在0不在。我们把运送次数抽象成物品价值,把状态抽象成体积,用一个dp[ i ] 记录完成状态i的最少步数那么就转化为了01背包问题,得到状态转移方程dp[ j|state ] = min( dp[ j|state ],dp[j] + 1 ),state为运送时物品的状态。
然后讲一下可能会有点看不懂的judge()的一段代码
for(int j = c1;j >= val[i];j--){ //将所有可能放进c1的组合标记为1
if(vis[j - val[i]])
vis[j] = 1;
}
这里的意思是将所有能放进c1的组合标记为1,他是这样运作的:先将vis[0] = 1,这样每次j到val[i]时,val[i]肯定会被置为1,因为是从c1开始往下搜,如果搜到一个vis[j - val[i]] = 1,这说明 j-val[i] 和 val[i] 能做成一个体积为j(j<=c1)的组合,可见j能塞进c1,所以置为1,这样一直搜索就能搜到所有的组合
代码:
#include<cstdio>
#include<map>
#include<set>
#include<queue>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
const int maxn = 1 << 10;
const int MOD = 100000000;
const int INF = 0x3f3f3f3f;
using namespace std;
int val[12],state[maxn],vis[maxn]; //vis[i] = 1代表重量为i的组合能塞进车c1
int dp[maxn]; //达成i状态最小步骤
int tot,n,c1,c2;
int judge(int x){ //判断能否一次运走
int sum = 0;
memset(vis,0,sizeof(vis));
vis[0] = 1;
for(int i = 0;i < n;i++){
if(x&1<<i){
sum += val[i];
for(int j = c1;j >= val[i];j--){
//将所有可能放进c1的组合标记为1
if(vis[j - val[i]])
vis[j] = 1;
}
}
}
if(sum > c1+c2) return 0; //总体积大于两车总容积
for(int i = 0;i <= c1;i++){
if(vis[i] && sum - i <= c2){
//只要有一种分组能让两辆车都能塞进两种组合
return 1;
}
}
return 0;
}
void init(){ //初始化,找到所有能运送的状态
tot = 0;
for(int i = 1;i < (1<<n);i++){
dp[i] = INF;
if(judge(i)){
state[tot++] = i;
}
}
}
int main(){
int T,Case = 1;
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&c1,&c2);
for(int i = 0;i < n;i++)
scanf("%d",&val[i]);
init();
int V = (1<<n) - 1;
dp[0] = 0;
for(int i = 0;i < tot;i++){
for(int j = V;j >= 0;j--){
if(dp[j] == INF) continue;
if(j&state[i]) continue;
//有交集,不能送第二次
dp[j|state[i]] = min(dp[j|state[i]],dp[j] + 1);
}
}
printf("Scenario #%d:\n%d\n\n",Case++,dp[(1<<n) - 1]);
}
return 0;
}