SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

题意:

有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点。

思路:

按题意研究一下就会发现题目所求为。

\[(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n[gcd(i,j,k)==1])+(\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==1])\\+(\sum_{i=1}^n\sum_{k=1}^n[gcd(i,k)==1])+(\sum_{j=1}^n\sum_{k=1}^n[gcd(j,k)==1]) \]

随便求其中一个,由莫比乌斯函数已知\(\sum_{d|n}\mu(d)=[n=1]\),替换可得

\[\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\sum_{d|n}\mu(d)=\sum_{d=1}^n\mu(d)*\lfloor{\frac{n}{d}}\rfloor^3 \]

其他情况同理。

参考:

莫比乌斯反演-让我们从基础开始

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;

int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
	memset(vis, 0, sizeof(vis));
	memset(mu, 0, sizeof(mu));
	cnt = 0;
	mu[1] = 1;
	for(int i = 2; i <= n; i++) {
		if(!vis[i]){
            prime[cnt++] = i;
            mu[i] = -1;
        }
		for(int j = 0; j < cnt && prime[j] * i <= n; j++){
			vis[prime[j] * i] = 1;
			if(i % prime[j] == 0) break;
			mu[i * prime[j]] = -mu[i];
		}
	}
}
ll get(int n){
    return 1LL * n * n * n + 3LL * n * n + 3LL * n;
}
int main(){
    int n, T;
    getmu(1000000);
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        ll ans = 0;
        for(int i = 1; i <= n; i++){
            ans += 1LL * mu[i] * get(n / i);
        }
        printf("%lld\n", ans);
    }
    return 0;
}


posted @ 2019-08-28 22:52  KirinSB  阅读(172)  评论(0编辑  收藏  举报