P3373 线段树2(多重标记线段树)题解
题意:
操作有:区间加,区间乘,区间询问求和
思路:
设一个数为\(m*sum+a\),加就变成了\(m*sum+a+a_2\),乘就变成了\(m*m_2*sum+a*m_2\),所以我们设两个标记\(mul\)表示乘,\(add\)表示加,然后如上转化。
代码:
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 100000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 10007;
using namespace std;
ll n, m, p;
ll sum[maxn << 2], add[maxn << 2], mul[maxn << 2];
int a[maxn];
void pushup(int rt){
sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % p;
}
void pushdown(int rt, int l, int r){
int m = (l + r) >> 1;
sum[rt << 1] = (sum[rt << 1] * mul[rt] + add[rt] * (m - l + 1)) % p;
sum[rt << 1 | 1] = (sum[rt << 1 | 1] * mul[rt] + add[rt] * (r - m)) % p;
add[rt << 1] = (add[rt << 1] * mul[rt] + add[rt]) % p;
add[rt << 1 | 1] = (add[rt << 1 | 1] * mul[rt] + add[rt]) % p;
mul[rt << 1] = mul[rt << 1] * mul[rt] % p;
mul[rt << 1 | 1] = mul[rt << 1 | 1] * mul[rt] % p;
add[rt] = 0;
mul[rt] = 1;
}
void build(int l, int r, int rt){
add[rt] = 0;
mul[rt] = 1;
if(l == r){
sum[rt] = a[l];
return;
}
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int L, int R, int l, int r, int v, int op, int rt){
if(L <= l && R >= r){
if(op == 2){
add[rt] = (add[rt] + v) % p;
sum[rt] = (sum[rt] + (r - l + 1) * v) % p;
}
else{
add[rt] = add[rt] * v % p;
mul[rt] = mul[rt] * v % p;
sum[rt] = sum[rt] * v % p;
}
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
update(L, R, l, m, v, op, rt << 1);
if(R > m)
update(L, R, m + 1, r, v, op, rt << 1 | 1);
pushup(rt);
}
ll query(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return sum[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
ll ret = 0;
if(L <= m)
ret += query(L, R, l, m, rt << 1);
if(R > m)
ret += query(L, R, m + 1, r, rt << 1 | 1);
return ret % p;
}
int main(){
scanf("%lld%lld%lld", &n, &m, &p);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
build(1, n, 1);
while(m--){
int op, x, y, k;
scanf("%d%d%d", &op, &x, &y);
if(op != 3) scanf("%d", &k);
if(op == 1) update(x, y, 1, n, k, 1, 1);
else if(op == 2) update(x, y, 1, n, k, 2, 1);
else printf("%lld\n", query(x, y, 1, n, 1));
}
return 0;
}