杭电多校HDU 6601 Keen On Everything But Triangle(主席树)题解
题意:
有\(n\)根长度不一的棍子,q次询问,求\([L,R]\)区间的棍子所能组成的周长最长的三角形。棍长\(\in [1, 1e9]\),n\(\in [1, 1e5]\)。
思路:
由于不构成三角形的数组为菲波那切数列,所以当棍数超过44时,长度超过1e9,所以从最大开始数最多不超过45次就能找到构成三角形。所以直接主席树查询区间第k大。复杂度\(O(45 * q * logn)\)。
代码:
#include<map>
#include<set>
#include<cmath>
#include<cstdio>
#include<stack>
#include<ctime>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
int n, q, tot;
int root[maxn];
ll a[maxn];
vector<ll> vv;
int getId(ll x){
return lower_bound(vv.begin(), vv.end(),x) - vv.begin() + 1;
}
struct node{
int lson, rson;
int sum;
}T[maxn * 40];
void update(int l, int r, int &now, int pre, int v, int pos){
T[++tot] = T[pre], T[tot].sum += v, now = tot;
if(l == r) return;
int m = (l + r) >> 1;
if(m >= pos)
update(l, m, T[now].lson, T[pre].lson, v, pos);
else
update(m + 1, r, T[now].rson, T[pre].rson, v, pos);
}
int query(int l, int r, int pre, int now, int k){
if(l == r) return l;
int m = (l + r) >> 1;
int sum = T[T[now].lson].sum - T[T[pre].lson].sum;
if(sum >= k)
return query(l, m, T[pre].lson, T[now].lson, k);
else
return query(m + 1, r, T[pre].rson, T[now].rson, k - sum);
}
void init(){
memset(T, 0, sizeof(T));
tot = 0;
vv.clear();
}
int main(){
while(~scanf("%d%d", &n, &q)){
init();
for(int i = 1; i <= n; i++){
scanf("%lld", &a[i]), vv.push_back(a[i]);
}
sort(vv.begin(), vv.end());
vv.erase(unique(vv.begin(), vv.end()), vv.end());
for(int i = 1; i <= n; i++){
update(1, vv.size(), root[i], root[i - 1], 1, getId(a[i]));
}
while(q--){
int l, r;
scanf("%d%d", &l, &r);
int num = 0;
ll ans = -1;
ll a1, a2, a3;
for(int i = r - l + 1; i >= 1; i--){
if(num == 0){
a3 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else if(num == 1){
a2 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else if(num == 2){
a1 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else{
a3 = a2, a2 = a1;
a1 = query(1, vv.size(), root[l - 1], root[r], i);
}
if(num == 3 && vv[a1 - 1] + vv[a2 - 1] > vv[a3 - 1]){
ans = vv[a1 - 1] + vv[a2 - 1] + vv[a3 - 1];
break;
}
}
printf("%lld\n", ans);
}
}
return 0;
}