2019牛客多校第二场E MAZE(线段树 + 矩阵)题解

题意:

n * m的矩阵,为0表示可以走,1不可以走。规定每走一步只能向下、向左、向右走。现给定两种操作:
一.1 x y表示翻转坐标(x,y)的0、1。
二.2 x y表示从(1,x)走到(n,y)有几种走法

思路:

假设\(dp[i][j]\)表示从下一层能到达(i,j)点的路径数,那么显然到达(i,j)的路径数为\(dp[i + 1][j]\)
我们能很显然的得到转移方程\(dp[i][j] = \sum_{k = l}^r dp[i - 1][k]\),其中l~r为(i,j)下方能直接走到(i,j)的连续区间。
我们可以直接用矩阵维护这个转移方程:

\[\left( \begin{matrix} dp[i][1] & dp[i][2] & dp[i][3] & \cdots & dp[i][m] \end{matrix} \right) * A_i= \left( \begin{matrix} dp[i + 1][1] & dp[i + 1][2] & dp[i + 1][3] & \cdots & dp[i + 1][m] \end{matrix} \right) \]

然后用线段树维护矩阵乘积即可
从(1,x)走到(n,y)只需把x位置置为1,然后乘以\(\prod_{i = 1}^n A_i\)

代码:

#include<cstdio>
#include<set>
#include<cmath>
#include<stack>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
int n, m, q;
int mp[maxn][12];
char s[12];
struct Mat{
    ll s[12][12];
    void init_zero(){
        for(int i = 0; i < 12; i++)
            for(int j = 0; j < 12; j++)
                s[i][j] = 0;
    }
};
Mat pmul(Mat a, Mat b, int len){
    Mat c;
    c.init_zero();
    for(int i = 1; i <= len; i++){
        for(int j = 1; j <= len; j++){
            for(int k = 1; k <= len; k++){
                c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j]) % MOD;
            }
        }
    }
    return c;
}

Mat mul[maxn << 2], a[maxn];
void pushup(int rt){
    mul[rt] = pmul(mul[rt << 1], mul[rt << 1 | 1], m);
}
void build(int l, int r, int rt){
    if(l == r){
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= m; j++)
                mul[rt].s[i][j] = a[l].s[i][j];
        return;
    }
    int m = (l + r) >> 1;
    build(l, m, rt << 1);
    build(m + 1, r, rt << 1 | 1);
    pushup(rt);
}
void update(int pos, int l, int r, Mat aa, int rt){
    if(l == r){
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= m; j++)
                mul[rt].s[i][j] = aa.s[i][j];
        return;
    }
    int m = (l + r) >> 1;
    if(pos <= m)
        update(pos, l, m, aa, rt << 1);
    else
        update(pos, m + 1, r, aa, rt << 1 | 1);
    pushup(rt);
}
int main(){
    scanf("%d%d%d", &n, &m, &q);
    for(int i = 1; i <= n; i++){
        scanf("%s", s + 1);
        for(int j = 1; j <= m; j++){
            mp[i][j] = s[j] - '0';
        }
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            int base;
            base = 1;
            for(int k = j; k >= 1; k--){
                if(mp[i][k] == 1) base = 0;
                a[i].s[k][j] = base;
            }
            base = 1;
            for(int k = j; k <= m; k++){
                if(mp[i][k] == 1) base = 0;
                a[i].s[k][j] = base;
            }
        }
    }



//    for(int k = 1; k <= n; k++){
//        for(int i = 1; i <= m; i++){
//            for(int j = 1; j <= m; j++){
//                printf("%d ", a[k].s[i][j]);
//            }
//            puts("");
//        }
//        puts("*****");
//    }

    build(1, n, 1);
    while(q--){
        int ques, i, j;
        scanf("%d", &ques);
        scanf("%d%d", &i, &j);
        if(ques == 1){
            mp[i][j] = !mp[i][j];
            for(int j = 1; j <= m; j++){
                int base;
                base = 1;
                for(int k = j; k >= 1; k--){
                    if(mp[i][k] == 1) base = 0;
                    a[i].s[k][j] = base;
                }
                base = 1;
                for(int k = j; k <= m; k++){
                    if(mp[i][k] == 1) base = 0;
                    a[i].s[k][j] = base;
                }
            }
            update(i, 1, n, a[i], 1);
        }
        else{
            Mat ret;
            ret.init_zero();
            ret.s[1][i] = 1;
            ret = pmul(ret, mul[1], m);
            printf("%lld\n", ret.s[1][j]);
        }
    }
    return 0;
}
/*
2 6 1
0 0 0 1 0 0
1 0 1 0 1 0
*/

posted @ 2019-07-23 16:21  KirinSB  阅读(374)  评论(0编辑  收藏  举报