HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解
题意:01串,操作1:把l r区间的0变1,1变0;操作2:求出l r区间的子序列种数
思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] + dp[i -1][0] (0结尾新串) + dp[i - 1][0] (0结尾旧串) - dp[i - 1][0] (重复) + 1(0本身被重复时去除)。
那么可以得到转移时的矩阵
$$ \left( \begin{matrix} dp[i - 1][0] & dp[i - 1][1] & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right) * \left( \begin{matrix} 1 & 0 & 0 \\ 1 &1 & 0 \\ 1 & 0 & 1 \end{matrix} \right) = \left( \begin{matrix} dp[i][0] & dp[i][1] & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right) $$
那么我们只要用线段树维护连续的矩阵乘积就行了。
如果翻转,那么存在一个规律,可以打表找出,直接实现连续区间矩阵乘积的翻转。
代码:
#include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include<vector> #include<cstring> #include <iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 1e5 + 5; const int M = 50 + 5; const ull seed = 131; const int INF = 0x3f3f3f3f; const ll MOD = 1000000007; char str[maxn]; struct Mat{ ll s[3][3]; void init(){ memset(s, 0, sizeof(s)); } }; Mat Mamul(Mat a, Mat b){ Mat ret; ret.init(); for(int i = 0; i < 3; i++){ for(int j = 0; j < 3; j++){ for(int k = 0; k < 3; k++){ ret.s[i][j] = (ret.s[i][j] + a.s[i][k] * b.s[k][j]) % MOD; } } } return ret; } Mat mul[maxn << 2]; int lazy[maxn << 2]; void is(Mat &a, char s){ if(s == '0'){ a.s[0][0] = 1, a.s[0][1] = 0, a.s[0][2] = 0; a.s[1][0] = 1, a.s[1][1] = 1, a.s[1][2] = 0; a.s[2][0] = 1, a.s[2][1] = 0, a.s[2][2] = 1; } else{ a.s[0][0] = 1, a.s[0][1] = 1, a.s[0][2] = 0; a.s[1][0] = 0, a.s[1][1] = 1, a.s[1][2] = 0; a.s[2][0] = 0, a.s[2][1] = 1, a.s[2][2] = 1; } } void change(Mat &a){ swap(a.s[0][0], a.s[1][1]); swap(a.s[1][0], a.s[0][1]); swap(a.s[2][0], a.s[2][1]); } void pushdown(int rt){ if(lazy[rt]){ lazy[rt << 1] ^= lazy[rt]; lazy[rt << 1 | 1] ^= lazy[rt]; change(mul[rt << 1]); change(mul[rt << 1 | 1]); lazy[rt] = 0; } } void pushup(int rt){ mul[rt] = Mamul(mul[rt << 1], mul[rt << 1 | 1]); } void build(int l, int r, int rt){ lazy[rt] = 0; if(l == r){ is(mul[rt], str[l]); return; } int m = (l + r) >> 1; build(l, m, rt << 1); build(m + 1, r, rt << 1 | 1); pushup(rt); } void update(int L, int R, int l, int r, int rt){ if(L <= l && R >= r){ lazy[rt] ^= 1; change(mul[rt]); return; } pushdown(rt); int m = (l + r) >> 1; if(L <= m) update(L, R, l, m, rt << 1); if(R > m) update(L, R, m + 1, r, rt << 1 | 1); pushup(rt); } Mat query(int L, int R, int l, int r, int rt){ if(L <= l && R >= r){ return mul[rt]; } pushdown(rt); int m = (l + r) >> 1; Mat ret; ret.init(); for(int i = 0; i < 3; i++) ret.s[i][i] = 1; if(L <= m) ret = Mamul(ret, query(L, R, l, m, rt << 1)); if(R > m) ret = Mamul(ret, query(L, R, m + 1, r, rt << 1 | 1)); pushup(rt); return ret; } int main(){ // Mat a, b; // is(a, '0'), is(b, '1'); // a = Mamul(Mamul(Mamul(a, b), b), b); // for(int i = 0; i < 3; i++){ // for(int j = 0; j < 3; j++){ // printf("%d ", a.s[i][j]); // } // puts(""); // } // printf("\n\n\n\n"); // // is(a, '1'), is(b, '0'); // a = Mamul(Mamul(Mamul(a, b), b), b); // for(int i = 0; i < 3; i++){ // for(int j = 0; j < 3; j++){ // printf("%d ", a.s[i][j]); // } // puts(""); // } // printf("\n\n\n\n"); int T; scanf("%d", &T); while(T--){ int n, q; scanf("%d%d", &n, &q); scanf("%s", str + 1); build(1, n, 1); while(q--){ int op, l, r; scanf("%d%d%d", &op, &l, &r); if(op == 1){ update(l, r, 1, n, 1); } else{ Mat a; a.init(); a.s[0][2] = 1; a = Mamul(a, query(l, r, 1, n, 1)); ll ans = (a.s[0][0] + a.s[0][1]) % MOD; printf("%lld\n", ans); } } } return 0; }