Gym 101128J Saint John Festival(凸包 + 二分判点和凸包关系)题解

题意:给你一堆黑点一堆红点,问你有最多几个黑点能找到三个红点,使这个黑点在三角形内?

思路:显然红点组成的凸包内的所有黑点都能做到。但是判断黑点和凸包的关系朴素方法使O(n^2),显然超时。那么我现在有一个更好的方法判断点和凸包的关系。我固定一个红点,然后找连续两个红点使黑点 i 在这个三角形内(向量判),然后用二分查找是否存在这样的两个连续红点。这样复杂度为nlogn。

注意凸包不要用atan2的那种,会有精度误差...

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e4 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
struct point
{
    double x,y;
}p[100000],a[100000],b[100000], g;
int n, tot;
bool cmp(point A,point B)
{
    if(A.x!=B.x)
    return A.x<B.x;
    return A.y<B.y;
}
point operator -(point A,point B)
{
    point c;
    c.x=A.x-B.x;
    c.y=A.y-B.y;
    return c;
}
double cross(point A,point B)
{
    return A.x*B.y-B.x*A.y;
}
void dopack()
{
    tot=0;
    for(int i=1;i<=n;i++)
    {
        while(tot>1&&cross(p[tot-1]-p[tot-2],a[i]-p[tot-2])<=0)tot--;
        p[tot++]=a[i];
    }
    int k=tot;
    for(int i=n-1;i>0;i--)
    {
        while(tot>k&&cross(p[tot-1]-p[tot-2],a[i]-p[tot-2])<=0)tot--;
        p[tot++]=a[i];
    }
    if(n>1)tot--;
}
double turn(point st, point en, point q){
    //正数:点在向量左侧
    //负数:点在向量右侧
    //0:点在向量直线上
    return (st.x - q.x) * (en.y - q.y) - (en.x - q.x) * (st.y - q.y);
}
int mid(){
    int l, r;
    l = 1, r = tot - 2;
    while(l <= r){
        int m = (l + r) >> 1;
        if(turn(p[0], p[m], g) >= 0 && turn(p[0], p[m + 1], g) <= 0){
            if(turn(p[m], p[m + 1], g) >= 0) return 1;
            return 0;
        }
        if(turn(p[0], p[m], g) >= 0){
            l = m + 1;
        }
        else{
            r = m - 1;
        }
    }
    return 0;
}
int main(){
    int m;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
        scanf("%lf%lf", &a[i].x, &a[i].y);
    sort(a+1,a+1+n,cmp);
    dopack();
//    for(int i = 0; i < tot; i++){
//        printf("* %lf %lf\n", p[i].x, p[i].y);
//    }
    scanf("%d", &m);
    int ans = 0;
    for(int i = 1; i <= m; i++){
        scanf("%lf%lf", &g.x, &g.y);
        ans += mid();
    }
    printf("%d\n", ans);
    return 0;
}

 

posted @ 2019-05-06 19:32  KirinSB  阅读(269)  评论(0编辑  收藏  举报