HihoCoder 1636 Pangu and Stones(区间DP)题解

题意:合并石子,每次只能合并l~r堆成1堆,代价是新石堆石子个数,问最后能不能合成1堆,不能输出0,能输出最小代价

思路:dp[l][r][t]表示把l到r的石堆合并成t需要的最小代价。

当t == 1时,dp[i][j][1] = min(dp[i][j][1], dp[i][k][t] + dp[k + 1][j][1] + sum[j] - sum[i - 1]),其中t属于[l - 1, r - 1]

当t >= 2时,dp[i][j][t] = min(dp[i][j][t], dp[i][k][t - 1] + dp[k + 1][j][1])。

初始化:

for(int i = 1; i <= n; i++){
    for(int j = i; j <= n; j++){
        dp[i][j][j - i + 1] = 0;
    }
}        

 

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 100 + 10;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int a[maxn], dp[maxn][maxn][maxn], sum[maxn];
int main(){
    int n, l, r;
    while(~scanf("%d%d%d", &n, &l, &r)){
        sum[0] = 0;
        for(int i = 1; i <= n; i++){
            scanf("%d", &a[i]);
            sum[i] = a[i] + sum[i - 1];
        }
        memset(dp, INF, sizeof(dp));
        for(int i = 1; i <= n; i++){
            for(int j = i; j <= n; j++){
                dp[i][j][j - i + 1] = 0;
            }
        }
        for(int len = 2; len <= n; len++){
            for(int i = 1; i + len - 1 <= n; i++){

                int j = i + len - 1;
                for(int k = i; k < j; k++){
                    for(int t = l - 1; t <= r - 1; t++){
                        dp[i][j][1] = min(dp[i][j][1], dp[i][k][t] + dp[k + 1][j][1] + sum[j] - sum[i - 1]);
                    }
                }

                for(int t = 2; t <= len; t++){
                    for(int k = i; k < j; k++){
                        dp[i][j][t] = min(dp[i][j][t], dp[i][k][t - 1] + dp[k + 1][j][1]);
                    }
                }

            }
        }

        if(dp[1][n][1] >= INF) printf("0\n");
        else printf("%d\n", dp[1][n][1]);
    }
    return 0;
}

 

posted @ 2019-01-23 18:11  KirinSB  阅读(263)  评论(0编辑  收藏  举报