Yet Another Number Sequence——[矩阵快速幂]
Description
Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recurrence relation:
We'll define a new number sequence Ai(k) by the formula:
In this problem, your task is to calculate the following sum: A1(k) + A2(k) + ... + An(k). The answer can be very large, so print it modulo 1000000007(109 + 7).
Input
The first line contains two space-separated integers n, k(1 ≤ n ≤ 1017; 1 ≤ k ≤ 40).
Output
Print a single integer — the sum of the first n elements of the sequence Ai(k) modulo 1000000007(109 + 7).
Sample Input
Input
1 1
Output
1
Input
4 1
Output
34
Input
5 2
Output
316
Input
7 4
Output
73825
解题思路:
这是一道矩阵快速幂求多项式的应用,思路很清晰:找到各个量之间的递推关系,用矩阵求幂转移状态。问题的关键在于推导A(n,k),sumA(n),
F(n)之间的关系。过程如下:
1.令 U(n+1,k)=F(n+1)*(n+1)^k;
V(n+1,k)=F(n)*(n+1)^k;
Sum(n)=∑[i=1~n]A(i,k);
2.利用二项式定理将(1+i)^n展开;
则 U(n+1,k)=∑[i=0~k]C(i,k)*F(n)*(n)^i+∑[i=0~k]C(i,k)*F(n-1)*(n)^i
=∑[i=0~k]C(i,k)*U(n,i)+∑[i=0~k]C(i,k)*V(n,i);
同理 V(n+1,k)=∑[i=0~k]C(i,k)*U(n,i);
Sum(n)=Sum(n-1)+U(n,k);
3.状态转移用矩阵向量表示:
sum(n-1) | sum(n) | |
U(n,k) | U(n+1,k) | |
... |
... | |
U(n,0) | => | U(n+1,0) |
V(n,k) | V(n+1,k) | |
... |
... | |
V(n,0) | V(n+1,0) |
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <time.h> 5 #include <assert.h> 6 #define time_ printf("time : %f\n",double(clock())/CLOCKS_PER_SEC) 7 using namespace std; 8 #define maxk 40 9 #define MOD 1000000007 10 #define mod_(x) (x%MOD) 11 12 typedef long long LL; 13 LL n; 14 int k; 15 16 struct Matrix{ 17 int row,col; 18 int m[2*maxk+5][2*maxk+5]; 19 Matrix(int r=83,int c=83){ 20 row=r; 21 col=c; 22 memset(m, 0, sizeof m); 23 } 24 void operator=(const Matrix& m2){ 25 memcpy(m, m2.m, sizeof m); 26 } 27 }; 28 Matrix operator*(const Matrix& a,const Matrix& b){ 29 Matrix c(a.row,b.col); 30 for(int i=0;i<c.row;i++) 31 for(int j=0;j<c.col;j++){ 32 for(int p=0;p<a.col;p++){ 33 c.m[i][j]=(c.m[i][j]+LL(a.m[i][p])*b.m[p][j])%MOD; 34 //assert(c.m[i][j]>=0); 35 } 36 } 37 return c; 38 } 39 Matrix C; 40 void set_C(){ 41 for(int i=k;i>=0;i--) 42 for(int j=k;j>=i;j--){ 43 if(j==k||j==i) 44 C.m[i][j]=1; 45 else 46 C.m[i][j]=(C.m[i+1][j]+C.m[i+1][j+1])%MOD; 47 } 48 } 49 void cpy_C(Matrix& a,int pi,int pj){ 50 int len=k+1; 51 for(int i=0;i<len;i++) 52 for(int j=0;j<len;j++) 53 a.m[pi+i][pj+j]=C.m[i][j]; 54 } 55 void set_M(Matrix& a){ 56 a.m[0][0]=1,a.m[0][1]=1; 57 cpy_C(a, 1, 1); 58 cpy_C(a, k+2, 1); 59 cpy_C(a, 1, k+2); 60 } 61 Matrix pow_mod(Matrix& a,LL n){ 62 if(n==1) return a; 63 Matrix temp=pow_mod(a, n/2); 64 temp=temp*temp; 65 if(n%2){ 66 temp=temp*a; 67 } 68 return temp; 69 } 70 int pow_2(int n){ 71 if(n==0) return 1; 72 int temp=pow_2(n/2)%MOD; 73 temp=int((LL(temp)*temp)%MOD); 74 if(n%2) 75 temp=(temp*2)%MOD; 76 return temp; 77 } 78 int main(int argc, const char * argv[]) { 79 while(scanf("%lld%d",&n,&k)==2){ 80 if(n==1){ 81 printf("%d\n",1); 82 continue; 83 } 84 set_C(); 85 Matrix I(2*k+3,2*k+3); 86 set_M(I); 87 Matrix A(2*k+3,1); 88 A.m[0][0]=1; 89 for(int i=1;i<k+2;i++) 90 A.m[i][0]=pow_2(k+1-i+1); 91 for(int i=k+2;i<2*k+3;i++) 92 A.m[i][0]=pow_2(2*k+2-i); 93 Matrix temp=pow_mod(I, n-1); 94 A=temp*A; 95 printf("%d\n",A.m[0][0]); 96 //time_; 97 } 98 return 0; 99 }