tensorflow基本用法个人笔记
综述
TensorFlow程序分为构建阶段和执行阶段。通过构建一个图、执行这个图来得到结果。
构建图
创建源op,源op不需要任何输入,例如常量constant
,源op的输出被传递给其他op做运算。
import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
在一个会话中启动图
构造图之后,需要创建Session
对象来启动图。
# 启动默认图.
sess = tf.Session()
#执行刚才的图
result = sess.run(product)
print result
# ==> [[ 12.]]
# 任务完成, 关闭会话.
sess.close()
使用“with”代码块来自动完成关闭动作。
with tf.Session() as sess:
result = seff.run([product])
print result
Tensorflow一般自动检测GPU来执行操作,并默认使用第一个GPU,因此有些情况可能需要手动指定GPU。with...Device
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
...
"/cpu:0":机器的CPU
"/gpu:0":机器的第一个GPU
"/gpu:1":机器的第二个GPU
交互式使用
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor(张量)
TensorFlow程序使用tensor数据结构来代表所有数据。
变量
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value) #将新值赋给变量state
# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
init_op = tf.initialize_all_variables()
# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op 来初始化变量
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)
# 输出:
# 0
# 1
# 2
# 3
Feed
input1 = tf.placeholder(tf.types.float32)
input2 = tf.placeholder(tf.types.float32)
#placeholder为临时占位符
output = tf.mul(input1, input2)
with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
#这里通过feed_dict将数据填入刚才的占位符。
# 输出:
# [array([ 14.], dtype=float32)]
参考网址:TensorFlow中文社区