sha2-224算法实现原理深剖
一、基本介绍
SHA (Security Hash Algorithm) 是美国的 NIST 和 NSA 设计的一种标准的 Hash 算法,SHA 用于数字签名的标准算法的 DSS 中,也是安全性很高的一种 Hash 算法。
SHA-1 是第一代 SHA 算法标准,后来的 SHA-224、SHA-256、SHA-384 和 SHA-512 被统称为 SHA-2。本文介绍SHA2-224算法的实现原理。
二、实现原理
有关 SHA2-224 算法详情请参见 NIST.FIPS.180-4 。
NIST.FIPS.180-4 是SHA2-224算法的官方文档,(建议了解SHA2-224算法前,先了解下SHA2-256 sha2-256算法实现原理深剖 )其实现原理共分为5步:
第1步:字节填充(Append Padding Bytes)
数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数。
第2步:追加长度信息(Append Length)
数据比特位的数据长度追加到最后8字节中。
第3步:初始化MD Buffer(Initialize MD Buffer)
这一步最简单了,定义ABCD四个4字节数组,分别赋初值即可。
1 2 3 4 5 6 7 8 | uint32_t H0 = 0xC1059ED8; uint32_t H1 = 0x367CD507; uint32_t H2 = 0x3070DD17; uint32_t H3 = 0xF70E5939; uint32_t H4 = 0xFFC00B31; uint32_t H5 = 0x68581511; uint32_t H6 = 0x64F98FA7; uint32_t H7 = 0xBEFA4FA4; |
第4步:处理消息块(Process Message in 16-Byte Blocks)
这个是SHA2-224算法最核心的部分了,对第2步组装数据进行分块依次处理。
第5步:输出(Output)
这一步也非常简单,只需要将计算后的H0、H1、H2、H3、H4、H5、H6进行拼接输出即可。
三、示例讲解
由于SHA2--224与SHA2-256算法完全一致,只是hash value初始赋值和输出结果不同。
具体示例讲解看参考SHA2-256示例讲解,此处不再重复。
四、代码实现
以下为C/C++代码实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | #include <string.h> #include <stdio.h> #define HASH_BLOCK_SIZE 64 /* 512 bits = 64 bytes */ #define HASH_LEN_SIZE 8 /* 64 bits = 8 bytes */ #define HASH_LEN_OFFSET 56 /* 64 bytes - 8 bytes */ #define HASH_DIGEST_SIZE 16 /* 128 bits = 16 bytes */ #define HASH_ROUND_NUM 64 typedef unsigned char uint8_t; typedef unsigned short int uint16_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; /* SHA256 Constants */ static const uint32_t K[HASH_ROUND_NUM] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2 }; /* Swap bytes in 32 bit value. 0x01234567 -> 0x67452301 */ #define __bswap_32(x) \ ((((x) & 0xff000000) >> 24) \ | (((x) & 0x00ff0000) >> 8) \ | (((x) & 0x0000ff00) << 8) \ | (((x) & 0x000000ff) << 24)) static uint32_t Ch(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Y) ^ ((~X) & Z); } static uint32_t Maj(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Y) ^ (X & Z) ^ (Y & Z); } /* 循环向右移动offset个比特位 */ static uint32_t ROTR(uint32_t X, uint8_t offset) { uint32_t res = (X >> offset) | (X << (32 - offset)); return res; } /* 向右移动offset个比特位 */ static uint32_t SHR(uint32_t X, uint8_t offset) { uint32_t res = X >> offset; return res; } /* SIGMA0 */ static uint32_t SIGMA0(uint32_t X) { return ROTR(X, 2) ^ ROTR(X, 13) ^ ROTR(X, 22); } /* SIGMA1 */ static uint32_t SIGMA1(uint32_t X) { return ROTR(X, 6) ^ ROTR(X, 11) ^ ROTR(X, 25); } /* sigma0, different from SIGMA0 */ static uint32_t sigma0(uint32_t X) { uint32_t res = ROTR(X, 7) ^ ROTR(X, 18) ^ SHR(X, 3); return ROTR(X, 7) ^ ROTR(X, 18) ^ SHR(X, 3); } /* sigma1, different from SIGMA1 */ static uint32_t sigma1(uint32_t X) { return ROTR(X, 17) ^ ROTR(X, 19) ^ SHR(X, 10); } #define ASSERT_RETURN_INT(x, d) if(!(x)) { return d; } int sha2_224(unsigned char *out, const unsigned char * in, const int inlen) { ASSERT_RETURN_INT(out && in && (inlen >= 0), 1); int i = 0, j = 0, t = 0; // step 1: 字节填充(Append Padding Bytes) // 数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数 int iX = inlen / HASH_BLOCK_SIZE; int iY = inlen % HASH_BLOCK_SIZE; iX = (iY < HASH_LEN_OFFSET) ? iX : (iX + 1); int iLen = (iX + 1) * HASH_BLOCK_SIZE; unsigned char * X = malloc (iLen); memcpy (X, in, inlen); // 先补上1个1比特+7个0比特 X[inlen] = 0x80; // 再补上(k-7)个0比特 for (i = inlen + 1; i < (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET); i++) { X[i] = 0; } // step 2: 追加长度信息(Append Length) uint8_t *pLen = (uint64_t*)(X + (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET)); uint64_t iTempLen = inlen << 3; uint8_t *pTempLen = &iTempLen; pLen[0] = pTempLen[7]; pLen[1] = pTempLen[6]; pLen[2] = pTempLen[5]; pLen[3] = pTempLen[4]; pLen[4] = pTempLen[3]; pLen[5] = pTempLen[2]; pLen[6] = pTempLen[1]; pLen[7] = pTempLen[0]; // Step 3. 初始化MD Buffer(Initialize MD Buffer) uint32_t H0 = 0xC1059ED8; uint32_t H1 = 0x367CD507; uint32_t H2 = 0x3070DD17; uint32_t H3 = 0xF70E5939; uint32_t H4 = 0xFFC00B31; uint32_t H5 = 0x68581511; uint32_t H6 = 0x64F98FA7; uint32_t H7 = 0xBEFA4FA4; uint32_t M[HASH_BLOCK_SIZE / 4] = { 0 }; uint32_t W[HASH_ROUND_NUM] = { 0 }; // step 4: 处理消息块(Process Message in 64-Byte Blocks) for (i = 0; i < iLen / HASH_BLOCK_SIZE; i++) { /* Copy block i into M. */ for (j = 0; j < HASH_BLOCK_SIZE; j = j + 4) { uint64_t k = i * HASH_BLOCK_SIZE + j; M[j / 4] = (X[k] << 24) | (X[k + 1] << 16) | (X[k + 2] << 8) | X[k + 3]; } /* W[t]=M[t]; t:[0,15] */ for (t = 0; t <= 15; t++) { W[t] = M[t]; } /* W[t] = sigma1(W[t - 2]) + W[t - 7] + sigma0(W[t - 15]) + W[t - 16]; t:[16,63] */ for (t = 16; t < HASH_ROUND_NUM; t++) { W[t] = sigma1(W[t - 2]) + W[t - 7] + sigma0(W[t - 15]) + W[t - 16]; } uint32_t A = H0; uint32_t B = H1; uint32_t C = H2; uint32_t D = H3; uint32_t E = H4; uint32_t F = H5; uint32_t G = H6; uint32_t H = H7; for (t = 0; t < HASH_ROUND_NUM; t++) { uint32_t T1 = H + SIGMA1(E) + Ch(E, F, G) + K[t] + W[t]; uint32_t T2 = SIGMA0(A) + Maj(A, B, C); H = G; G = F; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2; } H0 = H0 + A; H1 = H1 + B; H2 = H2 + C; H3 = H3 + D; H4 = H4 + E; H5 = H5 + F; H6 = H6 + G; H7 = H7 + H; } // step 5: 输出 uint32_t* pOut = (uint8_t*)out; pOut[0] = __bswap_32(H0); pOut[1] = __bswap_32(H1); pOut[2] = __bswap_32(H2); pOut[3] = __bswap_32(H3); pOut[4] = __bswap_32(H4); pOut[5] = __bswap_32(H5); pOut[6] = __bswap_32(H6); free (X); return 0; } int main() { unsigned char digest[28] = { 0 }; sha2_224(digest, "Hello World!" , strlen ( "Hello World!" )); return 0; } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
2017-08-10 OSI七层协议详解
2017-08-10 TCP协议的3次握手与4次挥手过程【深度详解】