sha2-224算法实现原理深剖
一、基本介绍
SHA (Security Hash Algorithm) 是美国的 NIST 和 NSA 设计的一种标准的 Hash 算法,SHA 用于数字签名的标准算法的 DSS 中,也是安全性很高的一种 Hash 算法。
SHA-1 是第一代 SHA 算法标准,后来的 SHA-224、SHA-256、SHA-384 和 SHA-512 被统称为 SHA-2。本文介绍SHA2-224算法的实现原理。
二、实现原理
有关 SHA2-224 算法详情请参见 NIST.FIPS.180-4 。
NIST.FIPS.180-4 是SHA2-224算法的官方文档,(建议了解SHA2-224算法前,先了解下SHA2-256 sha2-256算法实现原理深剖 )其实现原理共分为5步:
第1步:字节填充(Append Padding Bytes)
数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数。
第2步:追加长度信息(Append Length)
数据比特位的数据长度追加到最后8字节中。
第3步:初始化MD Buffer(Initialize MD Buffer)
这一步最简单了,定义ABCD四个4字节数组,分别赋初值即可。
uint32_t H0 = 0xC1059ED8; uint32_t H1 = 0x367CD507; uint32_t H2 = 0x3070DD17; uint32_t H3 = 0xF70E5939; uint32_t H4 = 0xFFC00B31; uint32_t H5 = 0x68581511; uint32_t H6 = 0x64F98FA7; uint32_t H7 = 0xBEFA4FA4;
第4步:处理消息块(Process Message in 16-Byte Blocks)
这个是SHA2-224算法最核心的部分了,对第2步组装数据进行分块依次处理。
第5步:输出(Output)
这一步也非常简单,只需要将计算后的H0、H1、H2、H3、H4、H5、H6进行拼接输出即可。
三、示例讲解
由于SHA2--224与SHA2-256算法完全一致,只是hash value初始赋值和输出结果不同。
具体示例讲解看参考SHA2-256示例讲解,此处不再重复。
四、代码实现
以下为C/C++代码实现:
#include <string.h> #include <stdio.h> #define HASH_BLOCK_SIZE 64 /* 512 bits = 64 bytes */ #define HASH_LEN_SIZE 8 /* 64 bits = 8 bytes */ #define HASH_LEN_OFFSET 56 /* 64 bytes - 8 bytes */ #define HASH_DIGEST_SIZE 16 /* 128 bits = 16 bytes */ #define HASH_ROUND_NUM 64 typedef unsigned char uint8_t; typedef unsigned short int uint16_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; /* SHA256 Constants */ static const uint32_t K[HASH_ROUND_NUM] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2 }; /* Swap bytes in 32 bit value. 0x01234567 -> 0x67452301 */ #define __bswap_32(x) \ ((((x) & 0xff000000) >> 24) \ | (((x) & 0x00ff0000) >> 8) \ | (((x) & 0x0000ff00) << 8) \ | (((x) & 0x000000ff) << 24)) static uint32_t Ch(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Y) ^ ((~X) & Z); } static uint32_t Maj(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Y) ^ (X & Z) ^ (Y & Z); } /* 循环向右移动offset个比特位 */ static uint32_t ROTR(uint32_t X, uint8_t offset) { uint32_t res = (X >> offset) | (X << (32 - offset)); return res; } /* 向右移动offset个比特位 */ static uint32_t SHR(uint32_t X, uint8_t offset) { uint32_t res = X >> offset; return res; } /* SIGMA0 */ static uint32_t SIGMA0(uint32_t X) { return ROTR(X, 2) ^ ROTR(X, 13) ^ ROTR(X, 22); } /* SIGMA1 */ static uint32_t SIGMA1(uint32_t X) { return ROTR(X, 6) ^ ROTR(X, 11) ^ ROTR(X, 25); } /* sigma0, different from SIGMA0 */ static uint32_t sigma0(uint32_t X) { uint32_t res = ROTR(X, 7) ^ ROTR(X, 18) ^ SHR(X, 3); return ROTR(X, 7) ^ ROTR(X, 18) ^ SHR(X, 3); } /* sigma1, different from SIGMA1 */ static uint32_t sigma1(uint32_t X) { return ROTR(X, 17) ^ ROTR(X, 19) ^ SHR(X, 10); } #define ASSERT_RETURN_INT(x, d) if(!(x)) { return d; } int sha2_224(unsigned char *out, const unsigned char* in, const int inlen) { ASSERT_RETURN_INT(out && in && (inlen >= 0), 1); int i = 0, j = 0, t = 0; // step 1: 字节填充(Append Padding Bytes) // 数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数 int iX = inlen / HASH_BLOCK_SIZE; int iY = inlen % HASH_BLOCK_SIZE; iX = (iY < HASH_LEN_OFFSET) ? iX : (iX + 1); int iLen = (iX + 1) * HASH_BLOCK_SIZE; unsigned char* X = malloc(iLen); memcpy(X, in, inlen); // 先补上1个1比特+7个0比特 X[inlen] = 0x80; // 再补上(k-7)个0比特 for (i = inlen + 1; i < (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET); i++) { X[i] = 0; } // step 2: 追加长度信息(Append Length) uint8_t *pLen = (uint64_t*)(X + (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET)); uint64_t iTempLen = inlen << 3; uint8_t *pTempLen = &iTempLen; pLen[0] = pTempLen[7]; pLen[1] = pTempLen[6]; pLen[2] = pTempLen[5]; pLen[3] = pTempLen[4]; pLen[4] = pTempLen[3]; pLen[5] = pTempLen[2]; pLen[6] = pTempLen[1]; pLen[7] = pTempLen[0]; // Step 3. 初始化MD Buffer(Initialize MD Buffer) uint32_t H0 = 0xC1059ED8; uint32_t H1 = 0x367CD507; uint32_t H2 = 0x3070DD17; uint32_t H3 = 0xF70E5939; uint32_t H4 = 0xFFC00B31; uint32_t H5 = 0x68581511; uint32_t H6 = 0x64F98FA7; uint32_t H7 = 0xBEFA4FA4; uint32_t M[HASH_BLOCK_SIZE / 4] = { 0 }; uint32_t W[HASH_ROUND_NUM] = { 0 }; // step 4: 处理消息块(Process Message in 64-Byte Blocks) for (i = 0; i < iLen / HASH_BLOCK_SIZE; i++) { /* Copy block i into M. */ for (j = 0; j < HASH_BLOCK_SIZE; j = j + 4) { uint64_t k = i * HASH_BLOCK_SIZE + j; M[j / 4] = (X[k] << 24) | (X[k + 1] << 16) | (X[k + 2] << 8) | X[k + 3]; } /* W[t]=M[t]; t:[0,15] */ for (t = 0; t <= 15; t++) { W[t] = M[t]; } /* W[t] = sigma1(W[t - 2]) + W[t - 7] + sigma0(W[t - 15]) + W[t - 16]; t:[16,63] */ for (t = 16; t < HASH_ROUND_NUM; t++) { W[t] = sigma1(W[t - 2]) + W[t - 7] + sigma0(W[t - 15]) + W[t - 16]; } uint32_t A = H0; uint32_t B = H1; uint32_t C = H2; uint32_t D = H3; uint32_t E = H4; uint32_t F = H5; uint32_t G = H6; uint32_t H = H7; for (t = 0; t < HASH_ROUND_NUM; t++) { uint32_t T1 = H + SIGMA1(E) + Ch(E, F, G) + K[t] + W[t]; uint32_t T2 = SIGMA0(A) + Maj(A, B, C); H = G; G = F; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2; } H0 = H0 + A; H1 = H1 + B; H2 = H2 + C; H3 = H3 + D; H4 = H4 + E; H5 = H5 + F; H6 = H6 + G; H7 = H7 + H; } // step 5: 输出 uint32_t* pOut = (uint8_t*)out; pOut[0] = __bswap_32(H0); pOut[1] = __bswap_32(H1); pOut[2] = __bswap_32(H2); pOut[3] = __bswap_32(H3); pOut[4] = __bswap_32(H4); pOut[5] = __bswap_32(H5); pOut[6] = __bswap_32(H6); free(X); return 0; } int main() { unsigned char digest[28] = { 0 }; sha2_224(digest, "Hello World!", strlen("Hello World!")); return 0; }