md4算法实现原理深剖

一、基本介绍

MD系列算法是信息摘要三大算法中的一种,全称:Message Digest算法,按照规范版本分为MD2、MD4、MD5三种算法,目前最常用的是MD5版本算法。本文介绍MD4算法的实现原理。

1990 年,罗纳德·李维斯特教授开发出较之 MD2 算法有着更高安全性的 MD4 算法。在这个算法中,我们仍需对信息进行数据补位。不同的是,这种补位使其信息的字节长度加上 448 个字节后能成为 512 的倍数(信息字节长度 mod 512 = 448)。此外,关于 MD4 算法的处理与 MD2 算法又有很大差别。但最终仍旧是会获得一个 128 位的散列值。MD4 算法对后续消息摘要算法起到了推动作用,许多比较有名的消息摘要算法都是在 MD4 算法的基础上发展而来的,如 MD5、SHA-1、RIPE-MD 和 HAVAL 算法等。

二、实现原理

有关 MD4 算法详情请参见 RFC 1320 http://www.ietf.org/rfc/rfc1320.txt,RFC 1320 是MD4算法的官方文档,其实现原理共分为5步:

第1步:字节填充(Append Padding Bytes)

数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数。

第2步:追加长度信息(Append Length)

数据比特位的数据长度追加到最后8字节中。

第3步:初始化MD Buffer(Initialize MD Buffer)

这一步最简单了,定义ABCD四个4字节数组,分别赋初值即可。

uint32_t A = 0x67452301;	// [ 0x01, 0x23, 0x45, 0x67 ]
uint32_t B = 0xEFCDAB89;	// [ 0x89, 0xAB, 0xCD, 0xEF ]
uint32_t C = 0x98BADCFE;	// [ 0xFE, 0xDC, 0xBA, 0x98 ]
uint32_t D = 0x10325476;	// [ 0x76, 0x54, 0x32, 0x10 ]    

第4步:处理消息块(Process Message in 16-Byte Blocks)

这个是MD4算法最核心的部分了,对第2步组装数据进行分块依次处理。

      Process each 16-word block. */
      For i = 0 to N/16-1 do

        /* Copy block i into X. */
        For j = 0 to 15 do
          Set X[j] to M[i*16+j].
        end /* of loop on j */

        /* Save A as AA, B as BB, C as CC, and D as DD. */
        AA = A
        BB = B
        CC = C
        DD = D

        /* Round 1. */
        /* Let [abcd k s] denote the operation
             a = (a + F(b,c,d) + X[k]) <<< s. */
        /* Do the following 16 operations. */
        [ABCD  0  3]  [DABC  1  7]  [CDAB  2 11]  [BCDA  3 19]
        [ABCD  4  3]  [DABC  5  7]  [CDAB  6 11]  [BCDA  7 19]
        [ABCD  8  3]  [DABC  9  7]  [CDAB 10 11]  [BCDA 11 19]
        [ABCD 12  3]  [DABC 13  7]  [CDAB 14 11]  [BCDA 15 19]

        /* Round 2. */
        /* Let [abcd k s] denote the operation
             a = (a + G(b,c,d) + X[k] + 5A827999) <<< s. */
        /* Do the following 16 operations. */
        [ABCD  0  3]  [DABC  4  5]  [CDAB  8  9]  [BCDA 12 13]
        [ABCD  1  3]  [DABC  5  5]  [CDAB  9  9]  [BCDA 13 13]
        [ABCD  2  3]  [DABC  6  5]  [CDAB 10  9]  [BCDA 14 13]
        [ABCD  3  3]  [DABC  7  5]  [CDAB 11  9]  [BCDA 15 13]

        /* Round 3. */
        /* Let [abcd k s] denote the operation
             a = (a + H(b,c,d) + X[k] + 6ED9EBA1) <<< s. */
        /* Do the following 16 operations. */
        [ABCD  0  3]  [DABC  8  9]  [CDAB  4 11]  [BCDA 12 15]
        [ABCD  2  3]  [DABC 10  9]  [CDAB  6 11]  [BCDA 14 15]
        [ABCD  1  3]  [DABC  9  9]  [CDAB  5 11]  [BCDA 13 15]
        [ABCD  3  3]  [DABC 11  9]  [CDAB  7 11]  [BCDA 15 15]

        /* Then perform the following additions. (That is, increment each
           of the four registers by the value it had before this block
           was started.) */
        A = A + AA
        B = B + BB
        C = C + CC
        D = D + DD

      end /* of loop on i */

第5步:输出(Output)

这一步也非常简单,只需要将计算后的A、B、C、D进行拼接输出即可。

三、示例讲解

 四、代码实现

以下为C/C++代码实现:

#include <string.h>
#include <stdio.h>

#define HASH_BLOCK_SIZE         64  /* 512 bits = 64 bytes */
#define HASH_LEN_SIZE           8   /* 64 bits =  8 bytes */
#define HASH_LEN_OFFSET         56  /* 64 bytes - 8 bytes */
#define HASH_DIGEST_SIZE        16  /* 128 bits = 16 bytes */
#define HASH_ROUND_NUM          64

typedef unsigned char		uint8_t;
typedef unsigned short int	uint16_t;
typedef unsigned int		uint32_t;
typedef unsigned long long	uint64_t;


static uint32_t F(uint32_t X, uint32_t Y, uint32_t Z)
{
	return (X & Y) | ((~X) & Z);
}
static uint32_t G(uint32_t X, uint32_t Y, uint32_t Z)
{
	return (X & Y) | (X & Z) | (Y & Z);
}
static uint32_t H(uint32_t X, uint32_t Y, uint32_t Z)
{
	return X ^ Y ^ Z;
}

/* 循环向左移动offset个单位 */
static uint32_t MoveLeft(uint32_t X, uint8_t offset)
{
	return (X << offset) | (X >> (32 - offset));
}

static uint32_t Round1(uint32_t A, uint32_t B, uint32_t C, uint32_t D, uint32_t M, uint32_t N)
{
	return MoveLeft(A + F(B, C, D) + M, N);
}
static uint32_t Round2(uint32_t A, uint32_t B, uint32_t C, uint32_t D, uint32_t M, uint32_t N)
{
	return MoveLeft(A + G(B, C, D) + M + 0x5A827999, N);
}
static uint32_t Round3(uint32_t A, uint32_t B, uint32_t C, uint32_t D, uint32_t M, uint32_t N)
{
	return MoveLeft(A + H(B, C, D) + M + 0x6ED9EBA1, N);
}

#define ASSERT_RETURN_INT(x, d) if(!(x)) { return d; }

int md4(unsigned char *out, const unsigned char* in, const int inlen)
{
	ASSERT_RETURN_INT(out && in && (inlen > 0), 1);
	int i = 0, j = 0, k = 0;
	unsigned char L = 0, t = 0;

	// step 1: 字节填充(Append Padding Bytes)
	// 数据先补上1个1比特,再补上k个0比特,使得补位后的数据比特数(n+1+k)满足(n+1+k) mod 512 = 448,k取最小正整数
	int iX = inlen / HASH_BLOCK_SIZE;
	int iY = inlen % HASH_BLOCK_SIZE;
	iX = (iY < HASH_LEN_OFFSET) ? iX : (iX + 1);

	int iLen = (iX + 1) * HASH_BLOCK_SIZE;
	unsigned char* M = malloc(iLen);
	memcpy(M, in, inlen);
	// 先补上1个1比特+7个0比特
	M[inlen] = 0x80;
	// 再补上(k-7)个0比特
	for (i = inlen + 1; i < (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET); i++)
	{
		M[i] = 0;
	}

	// step 2: 追加长度信息(Append Length)
	uint64_t *pLen = (uint64_t*)(M + (iX * HASH_BLOCK_SIZE + HASH_LEN_OFFSET));
	*pLen = inlen << 3;

	// Step 3. 初始化MD Buffer(Initialize MD Buffer)
	uint32_t A = 0x67452301;	// [ 0x01, 0x23, 0x45, 0x67 ]
	uint32_t B = 0xEFCDAB89;	// [ 0x89, 0xAB, 0xCD, 0xEF ]
	uint32_t C = 0x98BADCFE;	// [ 0xFE, 0xDC, 0xBA, 0x98 ]
	uint32_t D = 0x10325476;	// [ 0x76, 0x54, 0x32, 0x10 ]

	uint32_t X[HASH_BLOCK_SIZE / 4] = { 0 };

	// step 4: 处理消息块(Process Message in 64-Byte Blocks)
	for (i = 0; i < iLen / HASH_BLOCK_SIZE; i++)
	{
		/* Copy block i into X. */
		for (j = 0; j < HASH_BLOCK_SIZE; j = j + 4)
		{
			uint32_t* temp = &M[i * HASH_BLOCK_SIZE + j];
			X[j/4] = *temp;
		}

		/* Save A as AA, B as BB, C as CC, and D as DD. */
		uint32_t AA = A;
		uint32_t BB = B;
		uint32_t CC = C;
		uint32_t DD = D;

		/* Round 1. */
		/* Let [abcd k s] denote the operation
		a = (a + F(b,c,d) + X[k]) <<< s. */

		/* Do the following 16 operations.
		[ABCD  0  3][DABC  1  7][CDAB  2 11][BCDA  3 19]
		[ABCD  4  3][DABC  5  7][CDAB  6 11][BCDA  7 19]
		[ABCD  8  3][DABC  9  7][CDAB 10 11][BCDA 11 19]
		[ABCD 12  3][DABC 13  7][CDAB 14 11][BCDA 15 19]
		*/
		A = Round1(A, B, C, D, X[0], 3);  D = Round1(D, A, B, C, X[1], 7);  C = Round1(C, D, A, B, X[2], 11);  B = Round1(B, C, D, A, X[3], 19);
		A = Round1(A, B, C, D, X[4], 3);  D = Round1(D, A, B, C, X[5], 7);  C = Round1(C, D, A, B, X[6], 11);  B = Round1(B, C, D, A, X[7], 19);
		A = Round1(A, B, C, D, X[8], 3);  D = Round1(D, A, B, C, X[9], 7);  C = Round1(C, D, A, B, X[10], 11); B = Round1(B, C, D, A, X[11], 19);
		A = Round1(A, B, C, D, X[12], 3); D = Round1(D, A, B, C, X[13], 7); C = Round1(C, D, A, B, X[14], 11); B = Round1(B, C, D, A, X[15], 19);

		/* Round 2. */
		/* Let [abcd k s] denote the operation
		a = (a + G(b,c,d) + X[k] + 5A827999) <<< s. */

		/* Do the following 16 operations.
		[ABCD  0  3][DABC  4  5][CDAB  8  9][BCDA 12 13]
		[ABCD  1  3][DABC  5  5][CDAB  9  9][BCDA 13 13]
		[ABCD  2  3][DABC  6  5][CDAB 10  9][BCDA 14 13]
		[ABCD  3  3][DABC  7  5][CDAB 11  9][BCDA 15 13] 
		*/
		A = Round2(A, B, C, D, X[0], 3);  D = Round2(D, A, B, C, X[4], 5);  C = Round2(C, D, A, B, X[8], 9);  B = Round2(B, C, D, A, X[12], 13);
		A = Round2(A, B, C, D, X[1], 3);  D = Round2(D, A, B, C, X[5], 5);  C = Round2(C, D, A, B, X[9], 9);  B = Round2(B, C, D, A, X[13], 13);
		A = Round2(A, B, C, D, X[2], 3);  D = Round2(D, A, B, C, X[6], 5);  C = Round2(C, D, A, B, X[10], 9); B = Round2(B, C, D, A, X[14], 13);
		A = Round2(A, B, C, D, X[3], 3);  D = Round2(D, A, B, C, X[7], 5);  C = Round2(C, D, A, B, X[11], 9); B = Round2(B, C, D, A, X[15], 13);

		/* Round 3. */
		/* Let [abcd k s] denote the operation
		a = (a + H(b,c,d) + X[k] + 6ED9EBA1) <<< s. */
		/* Do the following 16 operations. 
		[ABCD  0  3][DABC  8  9][CDAB  4 11][BCDA 12 15]
		[ABCD  2  3][DABC 10  9][CDAB  6 11][BCDA 14 15]
		[ABCD  1  3][DABC  9  9][CDAB  5 11][BCDA 13 15]
		[ABCD  3  3][DABC 11  9][CDAB  7 11][BCDA 15 15]
		*/
		A = Round3(A, B, C, D, X[0], 3);  D = Round3(D, A, B, C, X[8], 9);  C = Round3(C, D, A, B, X[4], 11);  B = Round3(B, C, D, A, X[12], 15);
		A = Round3(A, B, C, D, X[2], 3);  D = Round3(D, A, B, C, X[10], 9); C = Round3(C, D, A, B, X[6], 11);  B = Round3(B, C, D, A, X[14], 15);
		A = Round3(A, B, C, D, X[1], 3);  D = Round3(D, A, B, C, X[9], 9);  C = Round3(C, D, A, B, X[5], 11);  B = Round3(B, C, D, A, X[13], 15);
		A = Round3(A, B, C, D, X[3], 3);  D = Round3(D, A, B, C, X[11], 9); C = Round3(C, D, A, B, X[7], 11);  B = Round3(B, C, D, A, X[15], 15);

		/* Then perform the following additions. (That is, increment each
		of the four registers by the value it had before this block
		was started.) */
		A = A + AA;
		B = B + BB;
		C = C + CC;
		D = D + DD;
	}

	// step 5: 输出ABCD
	memcpy(out + 0,  &A, 4);
	memcpy(out + 4,  &B, 4);
	memcpy(out + 8,  &C, 4);
	memcpy(out + 12, &D, 4);
	free(M);

	return 0;
}

int main()
{
	unsigned char digest[16] = { 0 };

	md4(digest, "Hello World!", strlen("Hello World!"));

	return 0;
}

posted on 2022-08-04 20:57  仲达超  阅读(1729)  评论(2编辑  收藏  举报

导航