EOJ 2743 Stock Exchange

EOJ 2743  http://acm.cs.ecnu.edu.cn/problem.php?problemid=2743

本题为LIS:即Longest Increasing Sequence.(本题中严格递增)

最长上升子序列(LIS)长度的O(nlogn)算法:(对状态转移时查找的优化)

  用len[ i ]存放当前(需不断更新) 长度为 i 的上升子序列的末尾最小值

  注意到,len[]严格递增,可对其进行二分查找,

  找到最大的 i ,且满足len[ i ] < x 即可;

 

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string>
 4 #include <algorithm>
 5 #include <string.h>
 6 #include <stdlib.h>
 7 
 8 using namespace std;
 9  
10 int num[100005];
11 int dp[100005];
12 int len[100005];
13 int n;
14  
15 int search(int x)
16 {
17     int l = 1, r = n, m;
18     while(l <= r)
19     {
20         m = (l + r)/2;
21         if(x > len[m])
22                l = m+1;      // l的左边(i<l)始终满足len[i] <  x;
23         else
24             r = m-1;      // r的右边(j>r)始终满足len[j] >= x;
25     }
26     return l-1;
27 }
28  
29 int main()
30 {
31     while(scanf("%d", &n) != EOF)
32     {            
33         for(int i=1; i<=n; i++)
34             scanf("%d", &num[i]);            
35               
36         memset(len, 0x3f, sizeof(len));              
37         for(int i=1; i<=n; i++)
38         {
39             dp[i] = search(num[i]) + 1;                  
40             len[dp[i]] = min(len[dp[i]], num[i]);                         
41         }
42                             
43         int ans = 0;
44         for(int i=1; i<=n; i++)
45             ans = max(ans, dp[i]);
46         printf("%d\n", ans);
47     }
48     return 0;
49 }
View Code

 

posted on 2013-07-13 21:18  KimKyeYu  阅读(281)  评论(0编辑  收藏  举报

导航