BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述
小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够
联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因
为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的
询问。
输入
第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000
输出
对每个查询操作,输出被查询的边的负载。
样例输入
8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
样例输出
6
加边操作保证两个联通块都是树,那么LCT维护就好了嘛!
因为查询时保证x,y之间有边,那么先将x旋到原树的根reverse(x),再将y到根路径变成重链access(y)并将y旋成splay的根splay(y)。
这样x就是y的左儿子,查询的就是x子树大小和整棵树大小-x子树大小的乘积。注意这里的子树是指原树中的子树。
平常我们做的LCT都是维护树上路径信息,其实LCT也能维护子树信息。
我们将LCT上一个点的子节点分为两种:一种是实子节点,也就是这个点在splay上的左右子节点;另一种是虚子节点,就是指向这个点的节点,也就是原树中这个点的轻儿子。
LCT维护的路径信息是什么?一个点的权值+实子节点子树中的权值和。
那么LCT维护的子树信息呢?就是一个点的权值+实子节点子树中的权值和+虚子节点子树中的权值和。
怎么上传虚节点的信息呢?每个节点维护两个信息,一个是原树中整个子树的节点数,一个是原树中所有虚子节点子树的节点数之和。
我们考虑在什么地方会改变虚子节点的信息:
1、在access时一个点的右子节点会变成虚子节点,而上一次splay的节点会变成这个点的右子节点。
2、在link(x,y)时会将x指向y,这时y的虚子节点会多一个x,因此要更新y的信息。
知道怎么维护子树信息后就可以LCT过这道题了,注意答案爆int。
#include<set> #include<map> #include<cmath> #include<queue> #include<stack> #include<vector> #include<cstdio> #include<bitset> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,m; int x,y; char ch[3]; int s[100010][2]; int f[100010]; int r[100010]; int st[100010]; int size[100010]; int sum[100010]; int get(int rt) { return rt==s[f[rt]][1]; } void pushup(int rt) { sum[rt]=sum[s[rt][0]]+sum[s[rt][1]]+size[rt]+1; } void pushdown(int rt) { if(r[rt]) { r[s[rt][0]]^=1; r[s[rt][1]]^=1; r[rt]^=1; swap(s[rt][0],s[rt][1]); } } int is_root(int rt) { return rt!=s[f[rt]][0]&&rt!=s[f[rt]][1]; } void rotate(int rt) { int fa=f[rt]; int anc=f[fa]; int k=get(rt); if(!is_root(fa)) { s[anc][get(fa)]=rt; } s[fa][k]=s[rt][k^1]; f[s[fa][k]]=fa; s[rt][k^1]=fa; f[fa]=rt; f[rt]=anc; pushup(fa); pushup(rt); } void splay(int rt) { int top=0; st[++top]=rt; for(int i=rt;!is_root(i);i=f[i]) { st[++top]=f[i]; } for(int i=top;i>=1;i--) { pushdown(st[i]); } for(int fa;!is_root(rt);rotate(rt)) { if(!is_root(fa=f[rt])) { rotate(get(fa)==get(rt)?fa:rt); } } } void access(int rt) { for(int x=0;rt;x=rt,rt=f[rt]) { splay(rt); size[rt]+=sum[s[rt][1]]-sum[x]; s[rt][1]=x; pushup(rt); } } void reverse(int rt) { access(rt); splay(rt); r[rt]^=1; } void link(int x,int y) { reverse(x); reverse(y); f[x]=y; size[y]+=sum[x]; pushup(y); } int main() { scanf("%d%d",&n,&m); while(m--) { scanf("%s",ch); scanf("%d%d",&x,&y); if(ch[0]=='A') { link(x,y); } else { reverse(x); reverse(y); printf("%lld\n",1ll*(sum[y]-sum[x])*sum[x]); } } }