BZOJ3996[TJOI2015]线性代数——最小割

题目描述

给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得

D=(A*B-C)*A^T最大。其中A^T为A的转置。输出D

输入

第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.
接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。

输出

输出最大的D

样例输入

3
1 2 1
3 1 0
1 2 3
2 3 7

样例输出

2

提示

 1<=N<=500

 

如果没有C矩阵,答案就是B矩阵中每个数的和假设为ans,那么有了C矩阵,我们就是想使ans减小的尽量少。

对于C中每个元素,要么就是ans直接减掉这个元素的值,也就是A中对应位置选1;要么就是不要B中的一些元素,也就是A中一些的位置选0来防止ans减掉这个C中元素的值。

那么这个问题就可转化成最小割,将S连向B中每个点,流量为对应B中的点权值;将B中每个点连向这个点对应的行和列代表的点,流量为INF;最后再将列代表的点连向汇点,流量为C中对应点的权值。

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int next[5000001];
int to[5000001];
int val[5000001];
int head[1000001];
int tot=1;
int q[1000001];
int bak[1000001];
int n,x;
int S,T;
int ans;
int sum;
int d[1000001];
void add(int x,int y,int v)
{
    tot++;
    next[tot]=bak[x];
    bak[x]=tot;
    to[tot]=y;
    val[tot]=v;
    tot++;
    next[tot]=bak[y];
    bak[y]=tot;
    to[tot]=x;
    val[tot]=0;
} 
bool bfs(int S,int T)
{
    int r=0;
    int l=0;
    memset(d,-1,sizeof(d));
    q[r++]=T;
    d[T]=2;
    while(l<r)
    {
        int now=q[l];
        for(int i=bak[now];i;i=next[i])
        {
            if(d[to[i]]==-1&&val[i^1]!=0)
            {
                d[to[i]]=d[now]+1;
                q[r++]=to[i];
            }
        }
        l++;
    }
    if(d[S]==-1)
    {
        return false;
    }
    else
    {
        return true;
    }
}
int dfs(int x,int flow)
{
    if(x==T)
    {
        return flow;
    }
    int now_flow;
    int used=0;
    for(int &i=head[x];i;i=next[i])
    {
        if(d[to[i]]==d[x]-1&&val[i]!=0)
        {
            now_flow=dfs(to[i],min(flow-used,val[i]));
            val[i]-=now_flow;
            val[i^1]+=now_flow;
            used+=now_flow;
            if(now_flow==flow)
            {
                return flow;
            }
        }
    }
    if(used==0)
    {
        d[x]=-1;
    }
    return used;
}
void dinic()
{
    while(bfs(S,T)==true)
    {
        memcpy(head,bak,sizeof(bak));
        ans+=dfs(S,INF);
    }
}
int main()
{
    scanf("%d",&n);
    S=n*n+n+1;
    T=n*n+n+2;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            scanf("%d",&x);
            sum+=x;
            add(S,(i-1)*n+j,x);
            add((i-1)*n+j,n*n+i,INF);
            add((i-1)*n+j,n*n+j,INF);
        }
    }
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&x);
        add(n*n+i,T,x);
    }
    dinic();
    printf("%d",sum-ans);
}
posted @ 2018-10-03 20:21  The_Virtuoso  阅读(158)  评论(0编辑  收藏  举报