BZOJ3224普通平衡树——非旋转treap

题目:

此为平衡树系列第一道:普通平衡树您需要写一种数据结构,来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

n<=100000 所有数字均在-107到107内。 

输入样例:
10
1 106465
4 1
1 317721
1 460929
1 644985
1 84185
1 89851
6 81968
1 492737
5 493598
输出样例:
106465
84185
492737

变量声明:size[x],以x为根节点的子树大小;ls[x],x的左儿子;rs[x],x的右子树;r[x],x节点的随机数;v[x],x节点的权值。

root,树的总根;tot,树的大小。

非旋转treap不同于旋转treap需要靠旋转来维护平衡树的性质,他的操作可以用简单暴力来形容——只有合并和断裂两个操作。他不但有treap的优良性质,还有许多优点:支持可持久化和区间操作,常数比splay小。

下面介绍一下非旋转treap的这两个操作:

1.断裂

就是去掉一条边,把treap拆分成两棵树,对于区间操作可以进行两次断裂来分割出一段区间再进行操作。

以查找value为例,从root往下走,如果v[x]>value,那么下一步走ls[x],之后的点都比x小,把x接到右树上,下一次再接到右树上的点就是x的左儿子。

v[x]<=value与上述类似,在这里不加赘述。

2.合并

就是把断裂开的树合并起来,因为要维护堆的性质所以按可并堆来合并。

为了方便删除,所以建议把相同权值的点分开来加入树中,不要都放在同一个点。

非旋转treap代码比较短(为了清晰我写的比较长qwq)。

posted @   The_Virtuoso  阅读(354)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示