CodeForces 916D Jamie and To-do List

题意

你需要维护一个任务列表,有 \(q\) 次操作,每次操作形如以下四种:

  • set a x:设置任务 \(a\) 的优先级为 \(x\),如果任务列表中没有 \(a\) 则加进来。

  • remove a:将任务 \(a\) 移除列表。

  • query a:求出有多少个任务的优先级比 \(a\) 的小,如果 \(a\) 不在列表里输出 \(-1\)

  • undo d:撤销这次操作之前的 \(d\) 个操作。

注意撤销操作可以撤销之前的撤销操作

\(\texttt{Data Range:}1\leq q\leq 10^5,1\leq x\leq 10^9,1\leq\vert a\vert\leq 15\)

题解

我又是一个不看数据范围的屑 >_<

为什么这场的 D 比 E 还难写啊

好久没写可持久化数据结构了,来写个题解复习一下。

一看到什么撤销操作估计跟可持久化数据结构分不开了。

看到 query 操作其实可以开一棵可持久化权值线段树来维护一下,然后 set 的话需要一个可持久化数组来维护每个任务的优先级。

然后按照题意模拟就得了,因为这题的 \(x\leq 10^9\) 所以不写结构体式线段树可以免去建树的空间开销。

注意一下空间问题即可通过,这里可能要根据数据范围估算一下空间开销。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=2e5+51; 
map<string,ll>mp;
ll n,totn,totid,x,id,p,limit=1e9;
string op,str;
ll rt[MAXN<<2],rt2[MAXN<<2],sm[MAXN<<6],ls[MAXN<<6],rs[MAXN<<6];
inline ll read()
{
    register ll num=0,neg=1;
    register char ch=getchar();
    while(!isdigit(ch)&&ch!='-')
    {
        ch=getchar();
    }
    if(ch=='-')
    {
        neg=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        num=(num<<3)+(num<<1)+(ch-'0');
        ch=getchar();
    }
    return num*neg;
}
inline ll getId(string s)
{
    return mp.find(s)==mp.end()?mp[s]=++totid:mp[s];
}
inline void update(ll node)
{
    sm[node]=sm[ls[node]]+sm[rs[node]];
}
inline ll add(ll l,ll r,ll pos,ll val,ll node)
{
    ll cur=++totn;
    ls[cur]=ls[node],rs[cur]=rs[node];
    if(l==r)
    {
        return sm[cur]=sm[node]+val,cur;
    }
    ll mid=(l+r)>>1;
    if(pos<=mid)
    {
        ls[cur]=add(l,mid,pos,val,ls[node]);
    }
    else
    {
        rs[cur]=add(mid+1,r,pos,val,rs[node]);
    }
    return update(cur),cur;
}
inline ll query(ll l,ll r,ll ql,ll qr,ll node)
{
    if(ql<=l&&qr>=r)
    {
        return sm[node];
    }
    ll mid=(l+r)>>1,res=0;
    res+=ql<=mid?query(l,mid,ql,qr,ls[node]):0;
    res+=qr>mid?query(mid+1,r,ql,qr,rs[node]):0;
    return res;
}
int main()
{
    n=read();
    for(register int i=1;i<=n;i++)
    {
        cin>>op,rt[i]=rt[i-1],rt2[i]=rt2[i-1];
        if(op=="set")
        {
            cin>>str,x=read(),id=getId(str),p=query(1,limit,id,id,rt2[i]);
            p?rt[i]=add(1,limit,p,-1,rt[i]):1;    
            rt[i]=add(1,limit,x,1,rt[i]),rt2[i]=add(1,limit,id,x-p,rt2[i]);
        }
        if(op=="remove")
        {
            cin>>str,id=getId(str),p=query(1,limit,id,id,rt2[i]);
            p?rt[i]=add(1,limit,p,-1,rt[i]):1,rt2[i]=add(1,limit,id,-p,rt2[i]);
        }
        if(op=="undo")
        {
            x=read(),rt[i]=rt[i-x-1],rt2[i]=rt2[i-x-1];
        }
        if(op=="query")
        {
            cin>>str,id=getId(str),p=query(1,limit,id,id,rt2[i]);
            cout<<(p==0||p==1?p-1:query(1,limit,1,p-1,rt[i]))<<endl;
        }
    }
}
posted @ 2020-08-30 19:00  Karry5307  阅读(147)  评论(0编辑  收藏  举报