AtCoder Beginner Contest 183
第二次ak,纪念一下。
比赛链接:https://atcoder.jp/contests/abc183/tasks
A - ReLU
题解
模拟。
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int x;
cin >> x;
cout << (x >= 0 ? x : 0) << "\n";
return 0;
}
B - Billiards
题解
过两点向 \(x\) 轴作垂线,由两个直角三角形相似得:
\[\frac{x - sx}{gx - x} = \frac{sy}{gy}
\]
移项展开得:
\[(gy + sy) \times x = sy \times gx + sx \times gy
\]
即:
\[x = \frac{sy \times gx + sx \times gy}{gy + sy}
\]
Tips
要求误差小于 \(10^{-6}\) ,所以至少要输出小数点后 \(6\) 位。
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(6);
double sx, sy, gx, gy;
cin >> sx >> sy >> gx >> gy;
cout << (sy * gx + sx * gy) / (sy + gy) << "\n";
return 0;
}
C - Travel
题解
枚举所有情况即可。
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, k;
cin >> n >> k;
vector<vector<int>> a(n, vector<int>(n));
for (auto &v : a)
for (auto &x : v) cin >> x;
int ans = 0;
vector<int> p(n);
iota(p.begin(), p.end(), 0);
do {
if (p[0] != 0) continue;
int sum = a[p[n - 1]][p[0]];
for (int i = 1; i < n; i++) sum += a[p[i - 1]][p[i]];
if (sum == k) ++ans;
} while (next_permutation(p.begin(), p.end()));
cout << ans << "\n";
return 0;
}
D - Water Heater
题解
差分。
代码
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 10;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, w;
cin >> n >> w;
vector<long long> cnt(N);
for (int i = 0; i < n; i++) {
int s, t, p;
cin >> s >> t >> p;
cnt[s] += p;
cnt[t] -= p;
}
bool ok = cnt[0] <= w;
for (int i = 1; i < N; i++) {
cnt[i] += cnt[i - 1];
if (cnt[i] > w) ok = false;
}
cout << (ok ? "Yes" : "No") << "\n";
return 0;
}
E - Queen on Grid
题解
模拟做法:对于每个不为 '#' 的点,将水平、垂直、对角线上可达的点都加上走到当前点的方案数
for (int x = i + 1; x <= h and MP[x][j] == '.'; x++) {
dp[x][j] += dp[i][j];
}
for (int y = j + 1; y <= w and MP[i][y] == '.'; y++) {
dp[i][y] += dp[i][j];
}
for (int x = i + 1, y = j + 1; x <= h and y <= w and MP[x][y] == '.'; x++, y++) {
dp[x][y] += dp[i][j];
}
为了避免超时可以分别将三个方向用差分维护。
代码
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2010;
constexpr int MOD = 1e9 + 7;
char MP[N][N];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int h, w;
cin >> h >> w;
for (int i = 1; i <= h; i++) {
for (int j = 1; j <= w; j++) {
cin >> MP[i][j];
}
}
vector<vector<long long>> dp(N, vector<long long>(N));
vector<vector<long long>> row(N, vector<long long>(N));
vector<vector<long long>> col(N, vector<long long>(N));
vector<vector<long long>> diag(N, vector<long long>(N));
dp[1][1] = 1;
for (int i = 1; i <= h; i++) {
for (int j = 1; j <= w; j++) {
if (MP[i][j] == '#') continue;
(row[i][j] += row[i - 1][j]) %= MOD;
(col[i][j] += col[i][j - 1]) %= MOD;
(diag[i][j] += diag[i - 1][j - 1]) %= MOD;
(dp[i][j] += row[i][j] + col[i][j] + diag[i][j]) %= MOD;
if (MP[i + 1][j] == '.') row[i + 1][j] += dp[i][j];
if (MP[i][j + 1] == '.') col[i][j + 1] += dp[i][j];
if (MP[i + 1][j + 1] == '.') diag[i + 1][j + 1] += dp[i][j];
}
}
cout << dp[h][w] << "\n";
return 0;
}
F - Confluence
题解
并查集+启发式合并。
Tips
- 为了避免超时需要始终用大堆合并小堆,最坏时间复杂度为 \(O_{((\frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots )log_n)}\) ,用小堆合并大堆复杂度可能达到 \(O_{(n^2log_n)}\) 。
map<int, int> mp[N]
快于map<int, map<int, int>> mp
。
代码
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 100;
int n, q;
int fa[N], clas[N];
map<int, int> son_num[N];
int Find(int x) {
return fa[x] == x ? fa[x] : fa[x] = Find(fa[x]);
}
void Union(int x, int y) {
x = Find(x);
y = Find(y);
if (x != y) {
if (son_num[x].size() < son_num[y].size()) swap(x, y);
fa[y] = x;
for (const auto &[_class, num] : son_num[y]) {
son_num[x][_class] += num;
}
}
}
void Init() {
for (int i = 0; i < N; i++) {
fa[i] = i;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Init();
cin >> n >> q;
for (int i = 1; i <= n; i++) {
cin >> clas[i];
son_num[i][clas[i]] = 1;
}
for (int i = 0; i < q; i++) {
int op, x, y;
cin >> op >> x >> y;
if (op == 1) {
Union(x, y);
} else {
cout << son_num[Find(x)][y] << "\n";
}
}
return 0;
}