基于mykernel 2.0编写一个操作系统内核

1.实验环境搭建

  1. VMware
  2. win10
  3. Ubuntu 18.04 虚拟机

实验步骤:

在内核linux-5.4.34得基础上打补丁,用虚拟机qemu运行内核。

实验使用Axel下载Linux内核,Axel是一个命令行下载工具,支持多来源、多线程,能够保证下载的速度和稳定性。

Ubuntu缺省情况下,并没有提供C/C++的编译环境,build-essential提供基本的完整C/C++的编译环境。

libncurses-dev、bison、flex、libelf-dev提供编译和调试内核所需的软件包。libssl-dev用于提供wegt安全连接(有些下载需要,eg:github)。

准备工作完成后,进入内核的根目录,用patch命令加入补丁,make编译,编译成功后用qemu运行编译出的内核。

可以看到下图的不停的时间中断和打印my_start_kernel。

sudo apt install axel
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
sudo apt install qemu 
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
make defconfig 
make -j$(nproc) 
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

2.基于mykernel 实现简单的时间片轮转

时间片轮转算法的基本思想是,在每次时钟中断执行调度,根据进程的信息决定是否执行,一般是基于优先级判断,不过出于简单开发的考虑,循环遍历所有进程,每一个进程不会连续执行。

为了实现上述的需求,至少需要描述进程的数据结构,调度算法,进程上下文切换,时钟中断触发调度等功能。

我们从定义描述进程的数据结构PCB出发,并依次实现调度算法和进程上下问切换,最后实现时钟中断触发调度。

首先进入内核根目录下的mykernel目录。

 

 在mypch.h中,定义进程控制块PCB:

 1 #define MAX_TASK_NUM        4
 2 #define KERNEL_STACK_SIZE   1024*2
 3 /* CPU-specific state of this task */
 4 struct Thread {
 5     unsigned long        ip;
 6     unsigned long        sp;
 7 };
 8 
 9 typedef struct PCB{
10     int pid;
11     volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
12     unsigned long stack[KERNEL_STACK_SIZE];
13     /* CPU-specific state of this task */
14     struct Thread thread;
15     unsigned long    task_entry;
16     struct PCB *next;
17 }tPCB;
18 
19 void my_schedule(void);

 

实现mymain.c:

 1 #include <linux/types.h>
 2 #include <linux/string.h>
 3 #include <linux/ctype.h>
 4 #include <linux/tty.h>
 5 #include <linux/vmalloc.h>
 6 
 7 
 8 #include "mypcb.h"
 9 
10 tPCB task[MAX_TASK_NUM];
11 tPCB * my_current_task = NULL;
12 volatile int my_need_sched = 0;
13 
14 void my_process(void);
15 
16 
17 void __init my_start_kernel(void)
18 {
19     int pid = 0;
20     int i;
21     /* Initialize process 0*/
22     task[pid].pid = pid;
23     task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
24     task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
25     task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
26     task[pid].next = &task[pid];
27     /*fork more process */
28     for(i=1;i<MAX_TASK_NUM;i++)
29     {
30         memcpy(&task[i],&task[0],sizeof(tPCB));
31         task[i].pid = i;
32         task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
33         task[i].next = task[i-1].next;
34         task[i-1].next = &task[i];
35     }
36     /* start process 0 by task[0] */
37     pid = 0;
38     my_current_task = &task[pid];
39     asm volatile(
40         "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
41         "pushq %1\n\t"             /* push rbp */
42         "pushq %0\n\t"             /* push task[pid].thread.ip */
43         "ret\n\t"                 /* pop task[pid].thread.ip to rip */
44         : 
45         : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
46     );
47 } 
48 
49 int i = 0;
50 
51 void my_process(void)
52 {    
53     while(1)
54     {
55         i++;
56         if(i%10000000 == 0)
57         {
58             printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
59             if(my_need_sched == 1)
60             {
61                 my_need_sched = 0;
62                 my_schedule();
63             }
64             printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
65         }     
66     }
67 }

 

实现myinterrupt.c,时间中断触发调度:

 1 #include <linux/types.h>
 2 #include <linux/string.h>
 3 #include <linux/ctype.h>
 4 #include <linux/tty.h>
 5 #include <linux/vmalloc.h>
 6 
 7 #include "mypcb.h"
 8 
 9 extern tPCB task[MAX_TASK_NUM];
10 extern tPCB * my_current_task;
11 extern volatile int my_need_sched;
12 volatile int time_count = 0;
13 
14 /*
15  * Called by timer interrupt.
16  * it runs in the name of current running process,
17  * so it use kernel stack of current running process
18  */
19 void my_timer_handler(void)
20 {
21     if(time_count%1000 == 0 && my_need_sched != 1)
22     {
23         printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
24         my_need_sched = 1;
25     } 
26     time_count ++ ;  
27     return;      
28 }
29 
30 void my_schedule(void)
31 {
32     tPCB * next;
33     tPCB * prev;
34 
35     if(my_current_task == NULL 
36         || my_current_task->next == NULL)
37     {
38         return;
39     }
40     printk(KERN_NOTICE ">>>my_schedule<<<\n");
41     /* schedule */
42     next = my_current_task->next;
43     prev = my_current_task;
44     if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
45     {        
46         my_current_task = next; 
47         printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
48         /* switch to next process */
49         asm volatile(    
50             "pushq %%rbp\n\t"         /* save rbp of prev */
51             "movq %%rsp,%0\n\t"     /* save rsp of prev */
52             "movq %2,%%rsp\n\t"     /* restore  rsp of next */
53             "movq $1f,%1\n\t"       /* save rip of prev */    
54             "pushq %3\n\t" 
55             "ret\n\t"                 /* restore  rip of next */
56             "1:\t"                  /* next process start here */
57             "popq %%rbp\n\t"
58             : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
59             : "m" (next->thread.sp),"m" (next->thread.ip)
60         ); 
61     }  
62     return;    
63 }

 

重新编译:

 

 

 

 

 

 

 

 

 

 

posted @ 2020-05-11 23:32  Atsuko  阅读(165)  评论(0编辑  收藏  举报