KSzsh

导航

Number Factorization

题目链接

题目描述:

Given an integer \(n\).

Consider all pairs of integer arrays \(a\) and \(p\) of the same length such that \(n=∏a^{pi}_i\)\((\)i.e. \(a^{p1}_1⋅a^{p2}_2⋅…) (a_i>1;p_i>0)\) and ai is the product of some (possibly one) distinct prime numbers.

For example, for \(n=28=2^2⋅7^1=4^1⋅7^1\) the array pair \(a=[2,7], p=[2,1]\) is correct, but the pair of arrays \(a=[4,7], p=[1,1]\) is not, because \(4=2^2\) is a product of non-distinct prime numbers.

Your task is to find the maximum value of \(∑a_i⋅p_i\) \((\)i.e. \(a_1⋅p_1+a_2⋅p_2+…)\) over all possible pairs of arrays \(a\) and \(p\).

Note that you do not need to minimize or maximize the length of the arrays.

输入描述:

Each test contains multiple test cases. The first line contains an integer \(t(1≤t≤1000 )\) — the number of test cases.

Each test case contains only one integer \(n(2≤n≤10^9)\).

输出描述:

For each test case, print the maximum value of \(∑a_i⋅p_i\).

样例:

input:

7
100
10
864
130056192
1000000000
2
999999018

output:

20
10
22
118
90
2
333333009

Note:

In the first test case, \(100=10^2\) so that \(a=[10]\), \(p=[2]\) when \(∑a_i⋅p_i\) hits the maximum value \(10⋅2=20\). Also, \(a=[100]\), \(p=[1]\) does not work since \(100\) is not made of distinct prime factors.

In the second test case, we can consider \(10\) as \(10^1\), so \(a=[10]\), \(p=[1]\). Notice that when \(10=2^1⋅5^1\), \(∑a_i⋅p_i=7\).

AC代码:

#include <bits/stdc++.h>

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

PII p[N];
int d[N];

// 根据题意可得要找到多个不同质数的乘积和它的幂
// 可以先用试除法求出质因子和它的幂
// 随后根据幂从小到大排序
// 从大到小遍历一边,将所有质因子的可能出现的乘积求出来
// 最后再从小到大遍历一边,用当前数的幂减去前一个数的幂即为当前质数乘积之和的幂
void solve()
{
	int n;
	cin >> n;

	int cnt = 0;

	// 试除法求质因子和幂
	for(int i = 2; i <= n / i; i ++)
	{
		if(n % i == 0)
		{
			int m = 0;
			while(n % i == 0)
			{
				m ++;

				n /= i;
			}
			
			p[++ cnt] = {m, i};
		}
	}

	if(n > 1)
		p[++ cnt] = {1, n};

	sort(p + 1, p + 1 + cnt);

	d[cnt + 1] = 1;

	int ans = 0;

	// 因为幂小的数会最先被用完,所以从大到小求出质数乘积
	for(int i = cnt; i >= 1; i --)
		d[i] = d[i + 1] * p[i].second;
	

	for(int i = 1; i <= cnt; i ++)
		// 减去前面已经被用过的次数,就是当前乘积的幂
		if(p[i].first != p[i - 1].first)
			ans += d[i] * (p[i].first - p[i - 1].first);
		

	cout << ans << '\n';
}

int main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);

	int T;
	cin >> T;

	while(T --)
		solve();

	return 0;
}

posted on 2023-01-31 19:14  KSzh  阅读(21)  评论(0编辑  收藏  举报