KSzsh

导航

Change Usernames(拓扑序列)

题目链接

题目描述:

You run a web service with \(N\) users.

The \(i\)-th user with a current handle \(S_i\) wants to change it to \(T_i\).

Here, \(S_1,…,\) and \(S_N\) are pairwise distinct, and so are \(T_1,…,\) and \(T_N\)​.

Determine if there is an appropriate order to change their handles to fulfill all of their requests subject to the following conditions:

  • you change only one user's handle at a time;

  • you change each user's handle only once;

  • when changing the handle, the new handle should not be used by other users at that point.

  • \(1 \leq N \leq 10^5\)

  • \(S_i\) and \(T_i\) are strings of length between \(1\) and \(8\) (inclusive) consisting of lowercase English letters.

  • \(S_i \neq T_i\)

  • \(S_i\) are pairwise distinct.

  • \(T_i\) are pairwise distinct.

输入描述:

\(N\)

\(S_1 T_1\)

\(S_2 T_2\)

\(⋮\)

\(S_N T_N\)

输出描述:

Print \(Yes\) if they can change their handles to fulfill all of their requests subject to the conditions; print \(No\) otherwise.

样例1:

input:

2
b m
m d

output:

Yes

The \(1\)-st user with a current handle b wants to change it to m.

The \(2\)-nd user with a current handle m wants to change it to d.

First, you change the \(2\)-nd user's handle from m to d; then you change the \(1\)-st user's handle from b to m. This way, you can achieve the objective.

Note that you cannot change the \(1\)-st user's handle to m at first, because it is used by the \(2\)-nd user at that point.

样例2:

input:

3
a b
b c
c a

output:

No

The \(1\)-st user with a current handle a wants to change it to b.

The \(2\)-nd user with a current handle b wants to change it to c.

The \(3\)-rd user with a current handle c wants to change it to a.

We cannot change their handles subject to the conditions.

样例3:

input:

5
aaa bbb
yyy zzz
ccc ddd
xxx yyy
bbb ccc

output:

Yes

AC代码1:

#include <bits/stdc++.h>

using namespace std;

// 输入的字符串是N的两倍,所以要开两倍,不然就RE了
const int N = 2e5 + 10;

int n;
vector<string> g(N), m(N);
unordered_map<string, int> q;
unordered_map<string, vector<string>> p;

// 根据题意,只要所给的输入不会形成一个环就可以
// 那么把所给的输入抽象成一个有向图,问题就转变为判断一个图是不是有向无环图
// 而一个有向无环图一定是一个拓扑序列,所以最终只需要判断是不是一个拓扑序列就好了
// 直接默写模板
bool topsort()
{
	queue<string> s;

	int cnt = 0;

	// 将入度为0的字符串存入队列
	for(auto j : q)
		if(!j.second)
		{
			s.push(j.first);

			cnt ++;
		}

	while(s.size())
	{
		auto t = s.front();
		s.pop();

		// 删除每个入度为0的字符串t和其他字符串v的边
		// 如果删完之后 v 的入度也为0,则也存入队列
		for(auto &v : p[t])
		{
			if(-- q[v] == 0)
			{
				s.push(v);

				cnt ++;
			}
		}
	}

	// 如果整个过程结束后,每个点都存如果队列,则么就是拓扑序列
	return cnt == q.size();
}

int main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);

	cin >> n;

	for(int i = 1; i <= n; i ++)
	{
		// 输入两个字符串
		cin >> g[i] >> m[i];
		// 判断每个字符串的入度
		q[m[i]] ++;
		q.insert({g[i], 0});
		// 如果是整形可以用邻接表,但这里比较特殊就用map加vector来有向连接两个字符串
		p[g[i]].push_back(m[i]);
	}

	if(topsort())
		cout << "Yes\n";
	else
		cout << "No\n";

	return 0;
}

AC代码2:

#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 10;

int n;
string s[N];
vector<string> g(N), m(N);
unordered_map<string, int> q;
unordered_map<string, vector<string>> p;

bool topsort()
{
	// 思路与上一个代码一样的,不过这里用数组模拟队列
	int hh = 0, tt = -1;

	for(auto j : q)
		if(!j.second)
			s[++ tt] = j.first;

	while(hh <= tt)
	{
		auto t = s[hh ++];

		for(auto &v : p[t])
			if(-- q[v] == 0)
				s[++ tt] = v;
	}

	return tt == q.size() - 1;
}

int main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);

	cin >> n;

	for(int i = 1; i <= n; i ++)
	{
		cin >> g[i] >> m[i];
		q[m[i]] ++;
		q.insert({g[i], 0});
		p[g[i]].push_back(m[i]);
	}

	if(topsort())
		cout << "Yes\n";
	else
		cout << "No\n";

	return 0;
}

posted on 2023-01-19 21:00  KSzh  阅读(29)  评论(0编辑  收藏  举报