转一个 数学吧 的 帖 : 世界上最邪门的东西

数学吧 帖 《世界上最邪门的东西》  https://tieba.baidu.com/p/7512509964    。

 

 

 

 

 

 

 

 

 

线性主部 是 什么 ?       听起来 有点 耳熟,   像是 远方 的 故人  。

 

⊿ y = A ⊿ x + o ( ⊿ x )   ,    ⊿ x  ->  0

 

A ⊿ x  是 线性主部,     o ( ⊿ x )  是 什么 ?    微扰 ?    ⊿ x  的 高阶无穷小 ?

 

o ( ⊿ x )    应该 和  x₀  有关吧 ?     应该 是   o  ( x₀ ,  ⊿ x  )  ,   可能 简写写成   o ( ⊿ x )  ,    x₀   隐含了  。

 

和 线性主部 A ⊿ x   相对,     o ( ⊿ x )   应该 叫做什么 ?     非线性微扰 ?    非线性附属之微趋势 ?           哈哈哈哈哈哈  。

 

这套 定义 是 鞋上套鞋,      ⊿ y ,  ⊿ x  是 无穷小,   dy , dx 也是 无穷小,  但 还要 通过  ⊿ y ,  ⊿ x ,  再来 定义 dy dx ,    ⊿ y 用了 线性主部  +  微趋势 这个 架构  。

 

也就是说,    要 通过  一个 中间 的 中转 来 定义   dy, dx ,     中间 的 中转 是   ⊿ y = A ⊿ x + o ( ⊿ x )   ,    ⊿ x  ->  0    。

 

我原来 就说 数学 里 形式 很多,    真是这样  。

 

看着这些,    心里 冒出 一句话,     “会 1000 个 线性主部,   不如 会 一个 积分  。”

 

当然,  形式 有 形式 存在 的 意义,  形式 有 形式 的 用处,    形式 是 想象力 延伸 的 枝叶,     这些 枝叶 上 可以 结出果实,  也可以 长出 新 的 大树  。

 

以上 皆是  姑妄言之,       青少年 朋友们 不要被 误导,     (偷笑)  。

 

 

实际上,   ⊿ y = A ⊿ x + o ( ⊿ x )   ,    ⊿ x  ->  0    里 的  o ( ⊿ x )   到底等于多少,   是 无法 给出 的,   不信 ?    大家 试试  。  

 

因为   o ( ⊿ x )   的 定义 包含了 一个 矛盾  ,    这个矛盾 是 鞋上套鞋  导致 的  。

 

上面说了,   形式 有 形式 的 用处,  发展 形式 也是 好的,    但 如果 形式 套 形式 造成了 矛盾,   就有 问题 了 。

 

这就好比,  你 买了 两双鞋,   鞋 A 和 鞋 B ,    你 先 穿上 B,  在 B 外面 再穿上 A ,   然后 又要 在 A 的 外面 穿上 B ,     这就 产生  矛盾 了,  也可以说是  “悖论”  。

 

“悖论”  让 我 想起了   哲学 里 的  “二律背反”  ,     其实 我 一直 都 不知道 二律背反 是 什么  ,    当年 一直 没  看 到 那里  。

 

 

 

 

2022-5-31   补充

证明   o ( ⊿ x )   不存在,   可以作为一个 题目,   可以写一篇论文  。   同学们 加油 。

 

posted on 2021-08-27 18:40  凯特琳  阅读(109)  评论(0编辑  收藏  举报

导航