Java对象容器(转)
Java对象容器
范型和类型安全容器
因为数组是固定大小的,不能符合程序原型时的动态元素的管理,因此Java提供了一系列的容器对象。在读取一般的数组或者集合,例如ArrayList的用法,非常简单,但是在添加元素到集合的时候并没有检查所有的元素类型是否相同,这样做的后果就是在取出元素的时候会出现错误,而且是运行时错误,如下:
//: holding/ApplesAndOrangesWithoutGenerics.java // Simple container example (produces compiler warnings). // {ThrowsException} import java.util.*; class Apple { private static long counter; private final long id = counter++; public long id() { return id; } } class Orange {} public class ApplesAndOrangesWithoutGenerics { @SuppressWarnings("unchecked") public static void main(String[] args) { ArrayList apples = new ArrayList(); for(int i = 0; i < 3; i++) apples.add(new Apple()); // Not prevented from adding an Orange to apples: apples.add(new Orange()); for(int i = 0; i < apples.size(); i++) ((Apple)apples.get(i)).id(); // Orange is detected only at run time } } /* (Execute to see output) *///:~
于是我们可以使用范型来保证类型的安全,使得添加的元素属于同一种数据类型,避免了读取元素时候的元素类型不安全的问题,关于范型的用法如下:
//: holding/ApplesAndOrangesWithGenerics.java import java.util.*; public class ApplesAndOrangesWithGenerics { public static void main(String[] args) { ArrayList<Apple> apples = new ArrayList<Apple>(); for(int i = 0; i < 3; i++) apples.add(new Apple()); // Compile-time error: // apples.add(new Orange()); for(int i = 0; i < apples.size(); i++) System.out.println(apples.get(i).id()); // Using foreach: for(Apple c : apples) System.out.println(c.id()); } } /* Output: 0 1 2 0 1 2 *///:~
如果上塑类型统一,那么也可以将范型对应类型的子类型上塑添加到范型数组中
基本概念
Java的容器类分为两类:Collection,一系列元素,其中List中的元素按照插入的顺序进行排列;Set中不能有重复的元素;Queue按照先进先出的顺序进行数组的添加和读取。Map,一系列的键值集合,ArrayList使用数字下表进行元素读取,因此从一定意义上来说也是一种键值集合;map允许通过一种对象来查找另一种对象。Maps是一个非常有力的编程工具。
在使用的时候通常是与这些集合的接口的进行交互,而在创建对象的时候才会去使用具体的类型,如List<Apple> apples = new ArrayList<Apple>();
添加一组元素
在Arrays和Collections中有添加一组元素的方法,Collection.Arrays.asList()可以将一个数组或者逗号分开的一列元素转换为List对象。Collections.addAll()将一个Collection对象或者一个数组或者一系列用都好分开的元素添加到Collection当中。如下面的例子:
//: holding/AddingGroups.java // Adding groups of elements to Collection objects. import java.util.*; public class AddingGroups { public static void main(String[] args) { Collection<Integer> collection =new ArrayList<Integer>(Arrays.asList(1, 2, 3, 4, 5)); Integer[] moreInts = { 6, 7, 8, 9, 10 }; collection.addAll(Arrays.asList(moreInts)); // Runs significantly faster, but you can’t // construct a Collection this way: Collections.addAll(collection, 11, 12, 13, 14, 15); Collections.addAll(collection, moreInts); // Produces a list "backed by" an array: List<Integer> list = Arrays.asList(16, 17, 18, 19, 20); list.set(1, 99); // OK -- modify an element // list.add(21); // Runtime error because the // underlying array cannot be resized. } } ///:~
Collection的构造器可以接收Collection对象来初始化自己,但是Collections.addAll运行速度更快,因此更推荐使用默认构造器创建Collection然后再调用Collections.addAll()。Collection.addAll方法只能接受Collection对象作为参数,但是Array.asList或者Collections.addAll()使用的是参数列表。可以直接使用Arrays.asList,将得到的对象作为List使用,但是底层仍然是作为数组来表示的,当你试图添加或者删除元素的时候,实际上是要试图改变数组的大小,因此会得到一个Unsuported Operation运行时错误。
Arrays.asList的一个缺陷就是他对传入的类型做最好的猜测,而不管你指定的类型如何,有时候这样会产生错误,如下:
//: holding/AsListInference.java // Arrays.asList() makes its best guess about type. import java.util.*; class Snow {} class Powder extends Snow {} class Light extends Powder {} class Heavy extends Powder {} class Crusty extends Snow {} class Slush extends Snow {} public class AsListInference { public static void main(String[] args) { List<Snow> snow1 = Arrays.asList(new Crusty(), new Slush(), new Powder()); //Won’t compile: //List<Snow> snow2 = Arrays.asList(new Light(), new Heavy()); //Compiler says: //found: java.util.List<Powder> //required: java.util.List<Snow> // Collections.addAll() doesn’t get confused: List<Snow> snow3 = new ArrayList<Snow>(); Collections.addAll(snow3, new Light(), new Heavy()); // Give a hint using an explicit type argument specification: List<Snow> snow4 = Arrays.<Snow>asList(new Light(), new Heavy()); } } ///:~
容器打印
//: holding/PrintingContainers.java // Containers print themselves automatically. import java.util.*; import static net.mindview.util.Print.*; public class PrintingContainers { static Collection fill(Collection<String> collection) { collection.add("rat"); collection.add("cat"); collection.add("dog"); collection.add("dog"); return collection; } static Map fill(Map<String,String> map) { map.put("rat", "Fuzzy"); map.put("cat", "Rags"); map.put("dog", "Bosco"); map.put("dog", "Spot"); return map; } public static void main(String[] args) { print(fill(new ArrayList<String>())); print(fill(new LinkedList<String>())); print(fill(new HashSet<String>())); print(fill(new TreeSet<String>())); print(fill(new LinkedHashSet<String>())); print(fill(new HashMap<String,String>())); print(fill(new TreeMap<String,String>())); print(fill(new LinkedHashMap<String,String>())); } } /* Output: [rat, cat, dog, dog] [rat, cat, dog, dog] [dog, cat, rat] Holding Your Objects 281 [cat, dog, rat] [rat, cat, dog] {dog=Spot, cat=Rags, rat=Fuzzy} {cat=Rags, dog=Spot, rat=Fuzzy} {rat=Fuzzy, cat=Rags, dog=Spot} *///:~
List
List按照添加的顺序存放元素,List接口比Collection接口增加了允许插入和删除的方法,List有两种,ArrayList随机获取数据较快,但是在插入和一出元素的时候较慢;LinkedList用来顺序获取元素,插入和移除元素较快,但是随机获取元素较慢,但是比ArrayList有更多的特性:
//: holding/ListFeatures.java import typeinfo.pets.*; import java.util.*; import static net.mindview.util.Print.*; public class ListFeatures { public static void main(String[] args) { Random rand = new Random(47); List<Pet> pets = Pets.arrayList(7); print("1: " + pets); Hamster h = new Hamster(); pets.add(h); // Automatically resizes print("2: " + pets); print("3: " + pets.contains(h)); pets.remove(h); // Remove by object Pet p = pets.get(2); print("4: " + p + " " + pets.indexOf(p)); Pet cymric = new Cymric(); print("5: " + pets.indexOf(cymric)); print("6: " + pets.remove(cymric)); // Must be the exact object: print("7: " + pets.remove(p)); print("8: " + pets); pets.add(3, new Mouse()); // Insert at an index print("9: " + pets); List<Pet> sub = pets.subList(1, 4); print("subList: " + sub); print("10: " + pets.containsAll(sub)); Collections.sort(sub); // In-place sort print("sorted subList: " + sub); // Order is not important in containsAll(): print("11: " + pets.containsAll(sub)); Collections.shuffle(sub, rand); // Mix it up print("shuffled subList: " + sub); print("12: " + pets.containsAll(sub)); List<Pet> copy = new ArrayList<Pet>(pets); sub = Arrays.asList(pets.get(1), pets.get(4)); print("sub: " + sub); copy.retainAll(sub); print("13: " + copy); copy = new ArrayList<Pet>(pets); // Get a fresh copy copy.remove(2); // Remove by index print("14: " + copy); copy.removeAll(sub); // Only removes exact objects print("15: " + copy); copy.set(1, new Mouse()); // Replace an element print("16: " + copy); copy.addAll(2, sub); // Insert a list in the middle print("17: " + copy); print("18: " + pets.isEmpty()); pets.clear(); // Remove all elements print("19: " + pets); print("20: " + pets.isEmpty()); pets.addAll(Pets.arrayList(4)); print("21: " + pets); Object[] o = pets.toArray(); print("22: " + o[3]); Pet[] pa = pets.toArray(new Pet[0]); print("23: " + pa[3].id()); } } /* Output: 1: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug] 2: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Hamster] 3: true 4: Cymric 2 5: -1 6: false 7: true 8: [Rat, Manx, Mutt, Pug, Cymric, Pug] 9: [Rat, Manx, Mutt, Mouse, Pug, Cymric, Pug] subList: [Manx, Mutt, Mouse] 10: true sorted subList: [Manx, Mouse, Mutt] 11: true shuffled subList: [Mouse, Manx, Mutt] 12: true sub: [Mouse, Pug] 13: [Mouse, Pug] 14: [Rat, Mouse, Mutt, Pug, Cymric, Pug] 15: [Rat, Mutt, Cymric, Pug] 16: [Rat, Mouse, Cymric, Pug] 17: [Rat, Mouse, Mouse, Pug, Cymric, Pug] 18: false 19: [] 20: true 21: [Manx, Cymric, Rat, EgyptianMau] 22: EgyptianMau 284 Thinking in Java Bruce Eckel 23: 14 *///:~
历遍器
有些时候我们不知道我们将要使用的容器类型,或者说我们要对多种容器进行相同的历遍操作,这个时候如何做到代码与容器类型的分离,以便实现代码的重用呢?Java中提供了历遍器可以有效地将操作与容器类型相分离,如下:
//: holding/CrossContainerIteration.java import typeinfo.pets.*; import java.util.*; public class CrossContainerIteration { public static void display(Iterator<Pet> it) { while(it.hasNext()) { Pet p = it.next(); System.out.print(p.id() + ":" + p + " "); } System.out.println(); } public static void main(String[] args) { ArrayList<Pet> pets = Pets.arrayList(8); LinkedList<Pet> petsLL = new LinkedList<Pet>(pets); HashSet<Pet> petsHS = new HashSet<Pet>(pets); TreeSet<Pet> petsTS = new TreeSet<Pet>(pets); display(pets.iterator()); display(petsLL.iterator()); display(petsHS.iterator()); display(petsTS.iterator()); } } /* Output: 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat 5:Cymric 2:Cymric 7:Manx 1:Manx 3:Mutt 6:Pug 4:Pug 0:Rat *///:~
Iterator只能实现的功能有准备读取序列中的第一个元素;获取下一个元素;查看是否还有下一个元素;移除刚刚获取到的元素。ListIterator比Iterator功能更加强大,但是只对List有作用,Iterator只能前向移动,但是ListIterator是双向的,可以获取当前元素的前一个和下一个元素,可以设置当前元素的值,可以使用ListIterator来准备读取第一个元素,也可以通过传递索引来从指定的索引处开始读取,如下:
//: holding/ListIteration.java import typeinfo.pets.*; import java.util.*; public class ListIteration { public static void main(String[] args) { List<Pet> pets = Pets.arrayList(8); ListIterator<Pet> it = pets.listIterator(); while(it.hasNext()) System.out.print(it.next() + ", " + it.nextIndex() + ", " + it.previousIndex() + "; "); System.out.println(); // Backwards: while(it.hasPrevious()) System.out.print(it.previous().id() + " "); System.out.println(); System.out.println(pets); it = pets.listIterator(3); while(it.hasNext()) { it.next(); it.set(Pets.randomPet()); } System.out.println(pets); } } /* Output: Rat, 1, 0; Manx, 2, 5; Pug, 7, 6; Manx, 7 6 5 4 3 2 1 0 [Rat, Manx, Cymric, [Rat, Manx, Cymric, *///:
LinkedList
LinkedList继承自List接口,但是在插入和移除方面更加有效率,但是在随机读取方面效率较低,LinkedList添加了一些方法使得自身的性能更像是队列或者双向队列:
//: holding/LinkedListFeatures.java import typeinfo.pets.*; import java.util.*; import static net.mindview.util.Print.*; public class LinkedListFeatures { public static void main(String[] args) { LinkedList<Pet> pets = new LinkedList<Pet>(Pets.arrayList(5)); print(pets); // Identical: print("pets.getFirst(): " + pets.getFirst()); print("pets.element(): " + pets.element()); // Only differs in empty-list behavior: print("pets.peek(): " + pets.peek()); // Identical; remove and return the first element: print("pets.remove(): " + pets.remove()); print("pets.removeFirst(): " + pets.removeFirst()); // Only differs in empty-list behavior: print("pets.poll(): " + pets.poll()); print(pets); pets.addFirst(new Rat()); print("After addFirst(): " + pets); pets.offer(Pets.randomPet()); print("After offer(): " + pets); pets.add(Pets.randomPet()); print("After add(): " + pets); pets.addLast(new Hamster()); print("After addLast(): " + pets); print("pets.removeLast(): " + pets.removeLast()); } } /* Output: [Rat, Manx, Cymric, Mutt, Pug] pets.getFirst(): Rat pets.element(): Rat pets.peek(): Rat pets.remove(): Rat pets.removeFirst(): Manx pets.poll(): Cymric [Mutt, Pug] After addFirst(): [Rat, Mutt, Pug] After offer(): [Rat, Mutt, Pug, Cymric] After add(): [Rat, Mutt, Pug, Cymric, Pug] After addLast(): [Rat, Mutt, Pug, Cymric, Pug, Hamster] pets.removeLast(): Hamster *///:~
Stack
栈是一种先进后出的数据结构,LinkedList有一些方法可以直接应用于栈,因此可以使用LinkedList而不是使用栈,但是有些时候栈可以更好的表达我们想要的东西:
//: net/mindview/util/Stack.java // Making a stack from a LinkedList. package net.mindview.util; import java.util.LinkedList; public class Stack<T> { private LinkedList<T> storage = new LinkedList<T>(); public void push(T v) { storage.addFirst(v); } public T peek() { return storage.getFirst(); } public T pop() { return storage.removeFirst(); } public boolean empty() { return storage.isEmpty(); } public String toString() { return storage.toString(); } } ///:~
如果想要获得栈的性质,这里使用继承是不合适的。因为这样派生出来的类不仅仅具有栈的功能,还具备了LinkedList的其他功能,下面就是这个我们自己的栈和java.util中的Stack的用法:
//: holding/StackCollision.java import net.mindview.util.*; public class StackCollision { public static void main(String[] args) { net.mindview.util.Stack<String> stack = new net.mindview.util.Stack<String>(); for(String s : "My dog has fleas".split(" ")) stack.push(s); while(!stack.empty()) System.out.print(stack.pop() + " "); System.out.println(); java.util.Stack<String> stack2 = new java.util.Stack<String>(); for(String s : "My dog has fleas".split(" ")) stack2.push(s); while(!stack2.empty()) System.out.print(stack2.pop() + " "); } } /* Output: fleas has dog My fleas has dog My *///:~
虽然java.util.Stack存在,但是用LinkedList创建的Stack性能更好,因此更推荐使用我们自己创建的栈结构。
Set
Set只能保存不想同的元素,如果存储相同的元素多次,将会报错。Set最长用的场景是测试元素之间的关系,例如你可以询问某个对象是否在Set中。因为这样,Set中最常用也是最重要的功能是查找,同长我们选择HashSet来进行这个工作。Set继承了Collection接口,而且除了这个接口没有实现任何其他的功能。
HashSet采用哈系算法,没有对元素进行排序,TreeSet采用了红黑树数据结构,因此HashSet得到的结果是无序的,TreeSet得到的结果是有序的。
Set中最长用的功能就是contains来测试集合之间的关系,如下:
//: holding/SetOperations.java import java.util.*; import static net.mindview.util.Print.*; public class SetOperations { public static void main(String[] args) { Set<String> set1 = new HashSet<String>(); Collections.addAll(set1,"A B C D E F G H I J K L".split(" ")); set1.add("M"); print("H: " + set1.contains("H")); print("N: " + set1.contains("N")); Set<String> set2 = new HashSet<String>(); Collections.addAll(set2, "H I J K L".split(" ")); print("set2 in set1: " + set1.containsAll(set2)); set1.remove("H"); print("set1: " + set1); print("set2 in set1: " + set1.containsAll(set2)); set1.removeAll(set2); print("set2 removed from set1: " + set1); Collections.addAll(set1, "X Y Z".split(" ")); print("‘X Y Z’ added to set1: " + set1); } } /* Output: H: true N: false set2 in set1: true set1: [D, K, C, B, L, G, I, M, A, F, J, E] set2 in set1: false set2 removed from set1: [D, C, B, G, M, A, F, E] ‘X Y Z’ added to set1: [Z, D, C, B, G, M, A, F, Y, X, E] *///:~
Set中不能存储重复对象的特性非常有用,例如列举出出现的所有单词,还可以使用TreeSet将结果按照顺序输出:
//: holding/UniqueWordsAlphabetic.java // Producing an alphabetic listing. import java.util.*; import net.mindview.util.*; public class UniqueWordsAlphabetic { public static void main(String[] args) { Set<String> words = new TreeSet<String>(String.CASE_INSENSITIVE_ORDER); words.addAll(new TextFile("SetOperations.java", "\\W+")); System.out.println(words); } } /* Output: [A, add, addAll, added, args, B, C, class, Collections, contains, containsAll, D, E, F, false, from, G, H, HashSet, holding, I, import, in, J, java, K, L, M, main, mindview, N, net, new, Output, Print, public, remove, removeAll, removed, Set, set1, set2, SetOperations, split, static, String, to, true, util, void, X, Y, Z] *///:~
Map
在编程中通过一种对象索引另外一个对象非常有用。例如下面的代码用来检测java生成的随机数是否平均分布:
//: holding/Statistics.java // Simple demonstration of HashMap. import java.util.*; public class Statistics { public static void main(String[] args) { Random rand = new Random(47); Map<Integer,Integer> m = new HashMap<Integer,Integer>(); for(int i = 0; i < 10000; i++) { // Produce a number between 0 and 20: int r = rand.nextInt(20); Integer freq = m.get(r); m.put(r, freq == null ? 1 : freq + 1); } System.out.println(m); } } /* Output
另外Map还可以嵌套使用,只需要将其中的值设置为Map结构就可以,如下:
//: holding/MapOfList.java package holding; import typeinfo.pets.*; import java.util.*; import static net.mindview.util.Print.*; public class MapOfList { public static Map<Person, List<? extends Pet>> petPeople = new HashMap<Person, List<? extends Pet>>(); static { petPeople.put(new Person("Dawn"), Arrays.asList(new Cymric("Molly"),new Mutt("Spot"))); petPeople.put(new Person("Kate"), Arrays.asList(new Cat("Shackleton"), new Cat("Elsie May"), new Dog("Margrett"))); petPeople.put(new Person("Marilyn"), Arrays.asList( new Pug("Louie aka Louis Snorkelstein Dupree"), new Cat("Stanford aka Stinky el Negro"), new Cat("Pinkola"))); petPeople.put(new Person("Luke"), Arrays.asList(new Rat("Fuzzy"), new Rat("Fizzy"))); petPeople.put(new Person("Isaac"), Arrays.asList(new Rat("Freckly"))); } public static void main(String[] args) { print("People: " + petPeople.keySet()); print("Pets: " + petPeople.values()); for(Person person : petPeople.keySet()) { print(person + " has:"); for(Pet pet : petPeople.get(person)) print(" " + pet); } } } /* Output:
Queue
队列是一种先进先出的数据结构,出队的顺序和入队的顺序相同。队列在对对象从一处转移到另外一处的时候非常有用,尤其是在并发编程的时候。LinkedList有支持队列特性的方法,同时还继承了Queue接口,因此一个LinkedList可以当作Queue来使用,通过将LinkedList上塑造型到Queue,可以使用队列的一系列方法:
//: holding/QueueDemo.java // Upcasting to a Queue from a LinkedList. import java.util.*; public class QueueDemo { public static void printQ(Queue queue) { while(queue.peek() != null) System.out.print(queue.remove() + " "); System.out.println(); } public static void main(String[] args) { Queue<Integer> queue = new LinkedList<Integer>(); Random rand = new Random(47); for(int i = 0; i < 10; i++) queue.offer(rand.nextInt(i + 10)); printQ(queue); Queue<Character> qc = new LinkedList<Character>(); for(char c : "Brontosaurus".toCharArray()) qc.offer(c); printQ(qc); } } /* Output: 8 1 1 1 5 14 3 1 0 1 B r o n t o s a u r u s *///:~
上面介绍的是一般队列,按照等待的时间进行先进先出,但是有些事后我们需要根据对象被需要的等级来安排出队的顺序,这个时候我们需要使用优先级队列,PriorityQueue。当使用offer添加对象到PriorityQueue的时候,对象在队列中被排序,默认的排序方法是使用对象的自然顺序,但是可以通过提供自己的Comparator来改变对象的排列顺序,你首先得到的对象是最高优先等级的对象:
//: holding/PriorityQueueDemo.java import java.util.*; public class PriorityQueueDemo { public static void main(String[] args) { PriorityQueue<Integer> priorityQueue = new PriorityQueue<Integer>(); Random rand = new Random(47); for(int i = 0; i < 10; i++) priorityQueue.offer(rand.nextInt(i + 10)); QueueDemo.printQ(priorityQueue); List<Integer> ints = Arrays.asList(25, 22, 20,18, 14, 9, 3, 1, 1, 2, 3, 9, 14, 18, 21, 23, 25); priorityQueue = new PriorityQueue<Integer>(ints); QueueDemo.printQ(priorityQueue); priorityQueue = new PriorityQueue<Integer>(ints.size(), Collections.reverseOrder()); priorityQueue.addAll(ints); QueueDemo.printQ(priorityQueue); String fact = "EDUCATION SHOULD ESCHEW OBFUSCATION"; List<String> strings = Arrays.asList(fact.split("")); PriorityQueue<String> stringPQ = new PriorityQueue<String>(strings); QueueDemo.printQ(stringPQ); stringPQ = new PriorityQueue<String>(strings.size(), Collections.reverseOrder()); stringPQ.addAll(strings); QueueDemo.printQ(stringPQ); Set<Character> charSet = new HashSet<Character>(); for(char c : fact.toCharArray()) charSet.add(c); // Autoboxing PriorityQueue<Character> characterPQ = new PriorityQueue<Character>(charSet); QueueDemo.printQ(characterPQ); } } /* Output: 0 1 1 1 1 1 3 5 8 14 1 1 2 3 3 9 9 14 14 18 18 20 21 22 23 25 25 25 25 23 22 21 20 18 18 14 14 9 9 3 3 2 1 1 A A B C C C D D E E E F H H I I L N N O O O O S S S T T U U U W W U U U T T S S S O O O O N N L I I H H F E E E D D C C C B A A A B C D E F H I L N O S T U W *///:~
Integer,String和Character都可以与PriorityQueue配合,因为他们已经有内置的排序方法,如果需要使用自己创建的类与PriorityQueue使用,你必须包含附加的排序方法,或者Comparator。
集合vs历遍器
Collection提供了所有有序序列的容器接口,另外,java.utilAbstractCollection类提供了Collection的实现,你可以通过创建AbstractCollection的子类而不用书写重复的代码。使用Collection接口而不使用具体类型的好处就是代码重用,任何继承自Collection接口的类型都可以在这个方法中使用。另外,Java中Collection和iterator是绑定到一起的,继承了Collection就意味着提供了iterator方法:
//: holding/InterfaceVsIterator.java import typeinfo.pets.*; import java.util.*; public class InterfaceVsIterator { public static void display(Iterator<Pet> it) { while(it.hasNext()) { Pet p = it.next(); System.out.print(p.id() + ":" + p + " "); } System.out.println(); } public static void display(Collection<Pet> pets) { for(Pet p : pets) System.out.print(p.id() + ":" + p + " "); System.out.println(); } public static void main(String[] args) { List<Pet> petList = Pets.arrayList(8); Set<Pet> petSet = new HashSet<Pet>(petList); Map<String,Pet> petMap = new LinkedHashMap<String,Pet>(); String[] names = ("Ralph, Eric, Robin, Lacey, " + "Britney, Sam, Spot, Fluffy").split(", "); for(int i = 0; i < names.length; i++) petMap.put(names[i], petList.get(i)); display(petList); display(petSet); display(petList.iterator()); display(petSet.iterator()); System.out.println(petMap); System.out.println(petMap.keySet()); display(petMap.values()); display(petMap.values().iterator()); } } /* Output: 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat {Ralph=Rat, Eric=Manx, Robin=Cymric, Lacey=Mutt, Britney=Pug, Sam=Cymric, Spot=Pug, Fluffy=Manx} [Ralph, Eric, Robin, Lacey, Britney, Sam, Spot, Fluffy] 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx *///:~
Iterator的使用在涉及到不能上塑造型到Collection的时候就显得尤为重要。例如我们通过继承一个承载了Pet对象的类来创建一个Collection的实现,我们必须实现Collection的所有方法,即使我们在display方法中不许要使用他们。虽然这可以通过继承自AbstractCollection来实现,你还是必须实现iterator()方法和size()来弥补AbstractCollection没有实现的方法,而且这些方法有可能在AbstractCollection的其他方法中使用到:
//: holding/CollectionSequence.java import typeinfo.pets.*; import java.util.*; public class CollectionSequence extends AbstractCollection<Pet> { private Pet[] pets = Pets.createArray(8); public int size() { return pets.length; } public Iterator<Pet> iterator() { return new Iterator<Pet>() { private int index = 0; public boolean hasNext() { return index < pets.length; } public Pet next() { return pets[index++]; } public void remove() { // Not implemented throw new UnsupportedOperationException(); } }; } public static void main(String[] args) { CollectionSequence c = new CollectionSequence(); InterfaceVsIterator.display(c); InterfaceVsIterator.display(c.iterator()); } } /* Output: 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx *///:~
从上面的例子中我们可以看到,如果需要继承Collection,你必须实现iterator方法,但是如果你的类已经继承了其他的类,那么你就不能继承自AbstractCollection,这个时候,继承自Collection你就必须实现接口中的所有方法,因此通过继承和添加iterator就显得方便许多:
//: holding/NonCollectionSequence.java import typeinfo.pets.*; import java.util.*; class PetSequence { protected Pet[] pets = Pets.createArray(8); } public class NonCollectionSequence extends PetSequence { public Iterator<Pet> iterator() { return new Iterator<Pet>() { private int index = 0; public boolean hasNext() { return index < pets.length; } public Pet next() { return pets[index++]; } public void remove() { // Not implemented throw new UnsupportedOperationException(); } }; } public static void main(String[] args) { NonCollectionSequence nc = new NonCollectionSequence(); InterfaceVsIterator.display(nc.iterator()); } } /* Output: 0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx *///:~
通过提供Iterator是最松耦合的将序列与历遍序列相联系的方法,而且要比继承Collection要少得许多的限制。
Foreach和历遍器
freach语法可以对所有Collection对象使用。之所以可以的原因是Java SE5中引入了新的接口Iterable,包含了iterator方法用来生成iterator,foreach语法就是通过Iterable接口来实现历遍的,任何继承了Iterable接口的对象都可以使用foreach语法:
//: holding/IterableClass.java // Anything Iterable works with foreach. import java.util.*; public class IterableClass implements Iterable<String> { protected String[] words = ("And that is how " + "we know the Earth to be banana-shaped.").split(" "); public Iterator<String> iterator() { return new Iterator<String>() { private int index = 0; public boolean hasNext() { return index < words.length; } public String next() { return words[index++]; } public void remove() { // Not implemented throw new UnsupportedOperationException(); } }; } public static void main(String[] args) { for(String s : new IterableClass()) System.out.print(s + " "); } } /* Output: And that is how we know the Earth to be banana-shaped. *///:~
foreach语句可以用于数组或者任何Iterable接口,但是这并不意味着一个数组可以自动地转换成为Iterable,有没有任何装箱操作发生:
//: holding/ArrayIsNotIterable.java import java.util.*; public class ArrayIsNotIterable { static <T> void test(Iterable<T> ib) { for(T t : ib) System.out.print(t + " "); } public static void main(String[] args) { test(Arrays.asList(1, 2, 3)); String[] strings = { "A", "B", "C" }; // An array works in foreach, but it’s not Iterable: //! test(strings); // You must explicitly convert it to an Iterable: test(Arrays.asList(strings)); } } /* Output: 1 2 3 A B C *///:~
如果是已经有了一个继承自Iterable的类,但是因为值提供了一种历遍方法,现在我希望有不同的历遍方法,例如前向和反向历遍,以便我可以选择使用那种历遍方法,该如何解决呢?一种方案就是使用适配器模式,当需要一种接口来适合另外一个接口的时候可以使用这种模式。下面添加一种逆向的历遍方法,不能重写,只能添加一个方法来产生一个Iterable对象,然后使用这个对象来完成foreach语句,这样就可以完成多种历遍方式:
//: holding/AdapterMethodIdiom.java // The "Adapter Method" idiom allows you to use foreach // with additional kinds of Iterables. import java.util.*; class ReversibleArrayList<T> extends ArrayList<T> { public ReversibleArrayList(Collection<T> c) { super(c); } public Iterable<T> reversed() { return new Iterable<T>() { public Iterator<T> iterator() { return new Iterator<T>() { int current = size() - 1; public boolean hasNext() { return current > -1; } public T next() { return get(current--); } public void remove() { // Not implemented throw new UnsupportedOperationException(); } }; } }; } } public class AdapterMethodIdiom { public static void main(String[] args) { ReversibleArrayList<String> ral = new ReversibleArrayList<String>(Arrays.asList("To be or not to be".split(" "))); // Grabs the ordinary iterator via iterator(): for(String s : ral) System.out.print(s + " "); System.out.println(); // Hand it the Iterable of your choice for(String s : ral.reversed()) System.out.print(s + " "); } } /* Output: To be or not to be be to not or be To *///:~
使用这种方法还可以添加另外两种历遍的方法:
//: holding/MultiIterableClass.java // Adding several Adapter Methods. import java.util.*; public class MultiIterableClass extends IterableClass { public Iterable<String> reversed() { return new Iterable<String>() { public Iterator<String> iterator() { return new Iterator<String>() { int current = words.length - 1; public boolean hasNext() { return current > -1; } public String next() { return words[current--]; } public void remove() { // Not implemented throw new UnsupportedOperationException(); } }; } }; } public Iterable<String> randomized() { return new Iterable<String>() { public Iterator<String> iterator() { List<String> shuffled = new ArrayList<String>(Arrays.asList(words)); Collections.shuffle(shuffled, new Random(47)); return shuffled.iterator(); } }; } public static void main(String[] args) { MultiIterableClass mic = new MultiIterableClass(); for(String s : mic.reversed()) System.out.print(s + " "); System.out.println(); for(String s : mic.randomized()) System.out.print(s + " "); System.out.println(); for(String s : mic) System.out.print(s + " "); } } /* Output: banana-shaped. be to Earth the know we how is that And is banana-shaped. Earth that how the be And we know to And that is how we know the Earth to be banana-shaped. *///:~
我们可以看到random方法没有创建自己的Iterator仅仅是返回了乱序的List。我们可以看到Collections.shuffled方法不影响原数组的顺序,仅仅是打乱shuffle中的引用而已。之所以这样是因为randomized方法中先将Array.asList封装到ArrayList中,如果直接对Array.asList洗牌,那么产生List将会改变原数组中的是顺序,如下:
//: holding/ModifyingArraysAsList.java import java.util.*; public class ModifyingArraysAsList { public static void main(String[] args) { Random rand = new Random(47); Integer[] ia = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; List<Integer> list1 = new ArrayList<Integer>(Arrays.asList(ia)); System.out.println("Before shuffling: " + list1); Collections.shuffle(list1, rand); System.out.println("After shuffling: " + list1); System.out.println("array: " + Arrays.toString(ia)); List<Integer> list2 = Arrays.asList(ia); System.out.println("Before shuffling: " + list2); Collections.shuffle(list2, rand); System.out.println("After shuffling: " + list2); System.out.println("array: " + Arrays.toString(ia)); } } /* Output: Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, After shuffling: [4, 6, 3, 1, 8, 7, 2, 5, 10, array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, After shuffling: [9, 1, 6, 3, 7, 2, 5, 10, 4, array: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8] *///:~