返回顶部

数据采集与融合第二次个人作业

第一题

作业思路:

  • 步骤一:看懂网页源码

  • 步骤二:用 css 语法把需要的数据提出来

  • 步骤三:存入数据库

  • 运行结果:

  • 相关代码:

from bs4 import BeautifulSoup
import urllib
import requests
import sqlite3
from bs4 import UnicodeDammit

class WeatherDB():
    '''
    openDB : create a database
    closeDB : close database
    insert : insert record into database
    show : present infomation in database
    '''

    def openDB(self):
        self.connect = sqlite3.connect("weather.db")
        self.cursor = self.connect.cursor()
        try:
            self.connect.execute("create table weathers (wCity VARCHAR(16),wDate VARCHAR(16),wWeather VARCHAR(64),wTemp VARCHAR(32),CONSTRAINT  ds_weather PRIMARY KEY (wCity,wDate))")
        except:
            self.cursor.execute("DELETE FROM weathers")

    def closeDB(self):
        self.connect.commit()
        self.connect.close()

    def insert(self,city,date,weather,temp):
        try:
            self.connect.execute("insert into weathers (wCity,wDate,wWeather,wTemp) VALUES(?,?,?,?)",(city,date,weather,temp))
        except Exception as e:
            print(e)

    def show(self):
        self.connect.execute("select * from weathers")
        records = self.cursor.fetchall()
        print("%-16s%-16s%-32s%-16s%"%("city","date","weather","temp"))
        for record in records:
            print("%-16s%-16s%-32s%-16s%"%(record[0],record[1],record[2],record[3]))

class WeatherForecast():
    '''
    forecastCity : forecast weekly weather of given cities
    process : action
    '''

    def __init__(self):
        self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36 Edg/85.0.564.63"}
        self.citycode = {"东山":"101230608","厦门":"101230201","福州":"101230101"}

    def forcastCity(self,city):
        if city not in self.citycode.keys():
            print(city + " code is not exist")
            return
        url = "http://www.weather.com.cn/weather/" + self.citycode[city] + ".shtml"
        try:
            req = urllib.request.Request(url, headers=self.headers)
            data = urllib.request.urlopen(req)
            data = data.read()
            data = data.decode()
            soup = BeautifulSoup(data, "html.parser")
            li_list = soup.select("ul[class = 't clearfix'] li")
            print("城市      日期       天气       温度")
            # select the weather we need
            for li in li_list:
                try:
                    date = li.select("h1")[0].text
                    weather = li.select("p[class = 'wea']")[0].text
                    temp = li.select("p[class = 'tem'] span")[0].text + "/" + li.select("p[class = 'tem'] i")[0].text
                    print(city + "   " + date + "   " + weather + "   " + temp)
                    self.db.insert(city,date,weather,temp)
                except Exception as ee:
                    print(ee)
        except Exception as e:
            print(e)

    def process(self,cities):
        self.db = WeatherDB()
        self.db.openDB()
        for city in cities:
            self.forcastCity(city)

        self.db.closeDB()

ws = WeatherForecast()
ws.process(["东山","厦门","福州"])
  • 作业心得
    本次作业主要的收获是用 css 语法从网页中挑出我们需要的数据之后存入数据库,至少了解了框架是这样子写的~

第二题

  • 作业思路:
    拿到题目第一反应先用 bs 把想要的数据爬下来,但是会发现其实数据都是用 JS 动态加载的,所以赶紧打开 network 模块,找到需要的信息对应下的 JS 文件发现了这个大兄弟就存储了我们想要的数据。

(爬虫做多了会发现一般jQuery里面会放着我们想要的数据xixixi~)
好的现在我们已经知道了这个 JS 那就赶紧用 request 让他给爷爬过来,解码之后得到 JS 里面 Json 的内容,但是得到的是字符串,那就构成字典之后可以方便的提取相关的字段啦~
然后翻页也是非常简单的,只要点击下一页的按钮并且在 network 模块中找一下从前一页都后一页的 request url 发生了什么变化。可以发现仅仅只是 request url 中的 pn 发生了变化,所以只要对 pn 进行修改就可以实现翻页了。
既然爬取了辣么多的数据,在不用数据库存储的情况下我就比较喜欢用,也是比较通用的就是把数据存成 csv 文件格式,打开查看一目了然,接下来附上代码结果(爬了四页一共80条,就不全部展示了)~

  • 附上代码:
import requests
import re
import pandas as pd
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36 Edg/85.0.564.63"}
def get_Info_And_Save(url,offset):
    all_data = pd.DataFrame(columns=["序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量","成交额", "涨幅"])
    try:
        html = requests.get(url,headers = headers).content.decode(encoding="utf-8")
        res = re.findall(re.compile("\[(.+)\]"),html)[0]
        res = res.split("},") # split by } , but need to fix
        # print("序号 代码   名称      最新价    涨跌幅    涨跌额    成交量(股)    成交额(港元)    涨幅    ")
        for idx,info in enumerate(res):
            if idx != 19:# reach 19 dont add }
                info = info + "}" # make a complete dict
            info = eval(info) # construct a dict
            id = idx + 1 + offset
            code = info["f12"]
            name = info["f14"]
            newest_price = info["f2"]
            up_down_extent = info["f3"]
            up_down_value = info["f4"]
            deal_volume = info["f5"]
            deal_value = info["f6"]
            freq = info["f7"]
            # print(str(id) + "   " + str(code) + " " + str(name) + "    " + str(newest_price) + "     " + str(up_down_extent) + "    " + str(up_down_value) + "     " + str(deal_volume)\
            #       + "       " + str(deal_value) + "      " + str(freq))
            data = pd.DataFrame([id,code,name,newest_price,up_down_extent,up_down_value,deal_volume,deal_value,freq])
            new_data = pd.DataFrame(data.values.T,columns=None)
            new_data.columns = ["序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量","成交额", "涨幅"]
            all_data = all_data.append(new_data)
        return all_data
    except Exception as e:
        print(e)

def go_To_NextPage():
    stock_data = pd.DataFrame(columns=["序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "涨幅"])
    for idx in range(1,5):
        # compare different pages,find parameter "fn" will change autonomously
        url = "http://31.push2.eastmoney.com/api/qt/clist/get?cb=jQuery11240033772650735816256_1601427948453&pn={:,d}&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&\
            fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1601427948454".format(idx)
        info = get_Info_And_Save(url,20*(idx-1))
        stock_data = stock_data.append(info)
        stock_data.to_csv("stock_info.csv",index=False,encoding="utf-8-sig")

go_To_NextPage()
  • 作业心得
    第二题和第三题都是一样的,当网页的数据通过 JS 来动态加载的时候必须要去解析相应的 JS 来获取数据。

第三题

  • 作业思路:
    既然有了第一题的思路,那么第二题也就势如破竹了,同样需要找出特定信息所在的 JS。但是又必须多加一步,就是以学号后三位结尾并且加上任意的前三位,那么可以在搜索页那里先找出所有的以学号后三位结尾的股票代码,然后后面再来调用之前的做法删删补补就 OK 了。

  • 在搜索页中找到需要的 json ,提取对应的股票代码

  • 找到相应的 JS 再传入已获得的股票代码然后爬爬爬

  • 运行结果

  • 附上代码

import re
import requests
# search_url = "http://so.eastmoney.com/web/s?keyword=129"
url = "http://push2.eastmoney.com/api/qt/ulist.np/get?pn=1&pz=50&po=1&np=1&ut=fa5fd1943c7b386f172d6893dbfba10b&fltt=2&invt=2&fid=f62\
&secids=1.600129,1.603129,0.002129&fields=f12,f4,f5,f13,f186,f148,f187,f217,f14,f2,f3,f62,f184,f66,f69,f72,f75,f78,f81,f84,f87,f204,f205,f124&rt=52534396&cb=jQuery1124043095589175823057_1601447227478&_=1601447227499"
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36 Edg/85.0.564.63"}
def get_Stock_Code(url):
    # get stock code endswith 129
    code_list = []
    html = requests.get(url,headers = headers).content.decode(encoding="utf-8")
    res = re.findall(re.compile('"diff":\[(.+)\]'),html)[0].split("},")
    for idx,info in enumerate(res):
        if idx != len(res)-1:
            info = info + "}"
        info = eval(info)
        code = info["f12"]
        code_list.append(code)
    return code_list

def get_Info(code):
    print("代码        名称    今开    最高    涨停    换手(%)    成交额    ")
    url = "http://push2.eastmoney.com/api/qt/stock/get?ut=fa5fd1943c7b386f172d6893dbfba10b&invt=2&fltt=2&fields=f43,f57,f58,f169,f170,f46,f44,f51,f168,f47,f164,f163,f116,f60,f45,f52,f50,f48,f167,f117,f71,f161,f49,f530,f135,f136,f137,f138,f139,f141,f142,f144,f145,f147,f148,f140,f143,f146,f149,f55,f62,f162,f92,f173,f104,f105,f84,f85,f183,f184,f185,f186,f187,f188,f189,f190,f191,f192,f107,f111,f86,f177,f78,f110,f262,f263,f264,f267,f268,f250,f251,f252,f253,f254,f255,f256,f257,f258,f266,f269,f270,f271,f273,f274,f275,f127,f199,f128,f193,f196,f194,f195,f197,f80,f280,f281,f282,f284,f285,f286,f287,f292&secid=1." + str(code) +"&cb=jQuery11240959380450062036_1601458369843&_=1601458369844"
    html = requests.get(url, headers=headers).content.decode(encoding="utf-8")
    # print(re.findall(re.compile('"data":\{(.*?)\}\}\)'), html))
    res = re.findall(re.compile('"data":\{(.*?)\}\}\)'), html)[0]
    res = "{" + res + "}"  # constuct a complete dict
    res = eval(res)
    code = res["f57"]
    name = res["f58"]
    opening = res["f44"]
    highest = res["f46"]
    up_to_stop = res["f51"]
    change = res["f168"]
    volumn = res["f47"]
    print(str(code) + "    " + str(name) + "  " + str(opening) + "  " + str(highest) + "   " + str(up_to_stop) + "     " + str(change) + "      " + str(volumn))

if __name__ == "__main__":
    code_list = get_Stock_Code(url)[:2]
    for code in code_list:
        get_Info(code)

作业总结

这次作业难度不大,主要是考察从网页爬取数据然后存入数据库中以及当 bs4 无法从 HTML 源代码中爬取数据(也就是说网页数据是以 JS 动态加载的话),从 JS 中找出所需要的数据转化为 JSON 格式然后再提取相关的字段。然后问题是不知道这样子的代码是否稳定,当网页改版之后代码很可能失效。特别是第三题,换成其他的股票代码很可能会无法运行。

posted @ 2020-10-02 15:20  King_James23  阅读(302)  评论(0编辑  收藏  举报