HZOI20190906模拟39 工业,卡常,玄学
题面:https://www.cnblogs.com/Juve/articles/11484209.html
工业:
推一个式子,AC
没有用组合数。。。。推了2个多小时
我sbsbsbsbsbsbsbsbsbsbsbsbsbsbsb
#include<iostream> #include<cstdio> #include<cstring> #define int long long using namespace std; const int MAXN=3e5+5; const int mod=998244353; int n,m,a,b,inn[MAXN],inm[MAXN],fm[MAXN],fn[MAXN],ans=0; int q_pow(int a,int b,int p){ int res=1; while(b){ if(b&1) res=res%p*a%p; a=a%p*a%p; b>>=1; } return res%p; } signed main(){ //freopen("a_sample2.in","r",stdin); //freopen("vio.out","w",stdout); scanf("%lld%lld%lld%lld",&n,&m,&a,&b); a%=mod,b%=mod; for(int i=1;i<=n;++i) scanf("%lld",&inn[i]),inn[i]%=mod; for(int i=1;i<=m;++i) scanf("%lld",&inm[i]),inm[i]%=mod; fm[1]=1; for(int i=2;i<=m;++i){ fm[i]=fm[i-1]*(n-2+i)%mod*q_pow(i-1,mod-2,mod)%mod; //cout<<fm[i]<<endl; } fn[1]=1; for(int i=2;i<=n;++i){ fn[i]=fn[i-1]*(m-2+i)%mod*q_pow(i-1,mod-2,mod)%mod; //cout<<fn[i]<<endl; } for(int i=1;i<=n;++i){ //cout<<i<<' '<<0<<' '<<fn[n-i+1]<<' '<<m<<' '<<n-i<<endl; (ans+=inn[i]%mod*fn[n-i+1]%mod*q_pow(a,m,mod)%mod*q_pow(b,n-i,mod)%mod)%=mod; } for(int i=1;i<=m;++i){ //cout<<0<<' '<<i<<' '<<fm[m-i+1]<<' '<<m-i<<' '<<n<<endl; (ans+=inm[i]%mod*fm[m-i+1]%mod*q_pow(a,m-i,mod)%mod*q_pow(b,n,mod)%mod)%=mod; } printf("%lld\n",ans%mod); return 0; }
卡常:
基环树dp
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define re register using namespace std; const int MAXN=1e6+5; int n,a,b,ans=0x7fffffff; int to[MAXN<<1],nxt[MAXN<<1],pre[MAXN],val[MAXN],cnt=1; inline void add(re int u,re int v){ cnt++,to[cnt]=v,nxt[cnt]=pre[u],pre[u]=cnt; } bool vis[MAXN]; int st,ed,edge,f[MAXN],g[MAXN]; inline void dfs(re int x,re int fa,re int id){ if(vis[x]){ edge=id; st=fa,ed=x; return ; } vis[x]=1; for(re int i=pre[x];i;i=nxt[i]){ re int y=to[i]; if(y==fa) continue; dfs(y,x,i); } } inline void DFS(re int x,re int fa){ g[x]=0,f[x]=val[x]; for(re int i=pre[x];i;i=nxt[i]){ re int y=to[i]; if(y==fa) continue; if(edge==i||edge==(i^1)) continue; DFS(y,x); f[x]+=min(g[y],f[y]); g[x]+=f[y]; } } signed main(){ scanf("%d%d%d",&n,&a,&b); for(re int i=1;i<=n;++i){ re int x,y; scanf("%d%d",&x,&y); add(x,y),add(y,x); val[x]+=a,val[y]+=b; } dfs(1,0,0); DFS(st,0); ans=min(f[st],ans); DFS(ed,0); ans=min(f[ed],ans); printf("%d\n",ans); return 0; }
玄学:
那个-1的幂是由d(i*j)的和的奇偶性决定的。
d(x)为偶数时并没有任何影响,我们只考虑d(x)为奇数的时候,
不难想到,x这个时候是完全平方数。
我们把i拆成$p*q^2$(p没有平方因子),那j必须有$p*r^2$的形式,
所以对于每个i,都有$\sqrt{\frac{m}{p}}$个j产生贡献。
至于p的求法,线性筛即可。
我们知道,质数的p就是它本身
然后筛就好了
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; const int MAXN=1e7+2; long long n,m,ans=0; int prime[MAXN],vis[MAXN],p[MAXN],tot; void get_p(long long n){ vis[1]=p[1]=1; for(int i=2;i<=n;i++){ if(!vis[i]) prime[++tot]=i,p[i]=i; for(int j=1;j<=tot&&i*prime[j]<=n;j++){ vis[i*prime[j]]=1; if(!(p[i]%prime[j])){ p[i*prime[j]]=p[i]/prime[j]; break; } else p[i*prime[j]]=p[i]*p[prime[j]]; } } } signed main(){ scanf("%lld%lld",&n,&m); get_p(n); for(int i=1;i<=n;++i){ int sum=sqrt(m/p[i]); if(sum%2) --ans; else ++ans; } printf("%lld\n",ans); return 0; }