HZOI20190906模拟39 工业,卡常,玄学

题面:https://www.cnblogs.com/Juve/articles/11484209.html

工业:

推一个式子,AC

没有用组合数。。。。推了2个多小时

我sbsbsbsbsbsbsbsbsbsbsbsbsbsbsb

#include<iostream>
#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
const int MAXN=3e5+5;
const int mod=998244353;
int n,m,a,b,inn[MAXN],inm[MAXN],fm[MAXN],fn[MAXN],ans=0;
int q_pow(int a,int b,int p){
	int res=1;
	while(b){
		if(b&1) res=res%p*a%p;
		a=a%p*a%p;
		b>>=1;
	}
	return res%p;
}
signed main(){
	//freopen("a_sample2.in","r",stdin);
	//freopen("vio.out","w",stdout);
	scanf("%lld%lld%lld%lld",&n,&m,&a,&b);
	a%=mod,b%=mod;
	for(int i=1;i<=n;++i) scanf("%lld",&inn[i]),inn[i]%=mod;
	for(int i=1;i<=m;++i) scanf("%lld",&inm[i]),inm[i]%=mod;
	fm[1]=1;
	for(int i=2;i<=m;++i){
		fm[i]=fm[i-1]*(n-2+i)%mod*q_pow(i-1,mod-2,mod)%mod;
		//cout<<fm[i]<<endl;
	}
	fn[1]=1;
	for(int i=2;i<=n;++i){
		fn[i]=fn[i-1]*(m-2+i)%mod*q_pow(i-1,mod-2,mod)%mod;
		//cout<<fn[i]<<endl;
	}
	for(int i=1;i<=n;++i){
		//cout<<i<<' '<<0<<' '<<fn[n-i+1]<<' '<<m<<' '<<n-i<<endl;
		(ans+=inn[i]%mod*fn[n-i+1]%mod*q_pow(a,m,mod)%mod*q_pow(b,n-i,mod)%mod)%=mod;
	}
	for(int i=1;i<=m;++i){
		//cout<<0<<' '<<i<<' '<<fm[m-i+1]<<' '<<m-i<<' '<<n<<endl;
		(ans+=inm[i]%mod*fm[m-i+1]%mod*q_pow(a,m-i,mod)%mod*q_pow(b,n,mod)%mod)%=mod;
	}
	printf("%lld\n",ans%mod);
	return 0;
}

卡常:

基环树dp

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define re register
using namespace std;
const int MAXN=1e6+5;
int n,a,b,ans=0x7fffffff;
int to[MAXN<<1],nxt[MAXN<<1],pre[MAXN],val[MAXN],cnt=1;
inline void add(re int u,re int v){
	cnt++,to[cnt]=v,nxt[cnt]=pre[u],pre[u]=cnt;
}
bool vis[MAXN];
int st,ed,edge,f[MAXN],g[MAXN];
inline void dfs(re int x,re int fa,re int id){
	if(vis[x]){
		edge=id;
		st=fa,ed=x;
		return ;
	}
	vis[x]=1;
	for(re int i=pre[x];i;i=nxt[i]){
		re int y=to[i];
		if(y==fa) continue;
		dfs(y,x,i);
	}
}
inline void DFS(re int x,re int fa){
	g[x]=0,f[x]=val[x];
	for(re int i=pre[x];i;i=nxt[i]){
		re int y=to[i];
		if(y==fa) continue;
		if(edge==i||edge==(i^1)) continue;
		DFS(y,x);
		f[x]+=min(g[y],f[y]);
		g[x]+=f[y];
	}
}
signed main(){
	scanf("%d%d%d",&n,&a,&b);
	for(re int i=1;i<=n;++i){
		re int x,y;
		scanf("%d%d",&x,&y);
		add(x,y),add(y,x);
		val[x]+=a,val[y]+=b;
	}
	dfs(1,0,0);
	DFS(st,0);
	ans=min(f[st],ans);
	DFS(ed,0);
	ans=min(f[ed],ans);
	printf("%d\n",ans);
	return 0;
}

玄学:

那个-1的幂是由d(i*j)的和的奇偶性决定的。

d(x)为偶数时并没有任何影响,我们只考虑d(x)为奇数的时候,

不难想到,x这个时候是完全平方数。

我们把i拆成$p*q^2$(p没有平方因子),那j必须有$p*r^2$的形式,

所以对于每个i,都有$\sqrt{\frac{m}{p}}$个j产生贡献。

至于p的求法,线性筛即可。

我们知道,质数的p就是它本身

然后筛就好了

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN=1e7+2;
long long n,m,ans=0;
int prime[MAXN],vis[MAXN],p[MAXN],tot;
void get_p(long long n){
    vis[1]=p[1]=1;
    for(int i=2;i<=n;i++){
        if(!vis[i]) prime[++tot]=i,p[i]=i;
        for(int j=1;j<=tot&&i*prime[j]<=n;j++){
            vis[i*prime[j]]=1;
            if(!(p[i]%prime[j])){
                p[i*prime[j]]=p[i]/prime[j];
                break;
            }
            else p[i*prime[j]]=p[i]*p[prime[j]];
        }
    }
}
signed main(){
    scanf("%lld%lld",&n,&m);
    get_p(n);
	for(int i=1;i<=n;++i){
		int sum=sqrt(m/p[i]);
		if(sum%2) --ans;
		else ++ans;
	}
    printf("%lld\n",ans);
    return 0;
}

 

posted @ 2019-09-08 18:16  xukl21  阅读(169)  评论(0编辑  收藏  举报