2021年新高考一卷数学-函数导数

  1. 已知函数 \(f(x)=x(1-\ln x)\)
    (1)讨论函数的单调性
    (2)设 \(a,b\) 为两个不相等的正数,且 \(b\ln a-a\ln b=a-b\) ,证明:\(2<{1\over a}+{1\over b}<e\)

解:

(1)求导得 \(f'(x)=1-\ln x+x\cdot (-{1\over x})=-\ln x(x>0)\)

\(f'(x)=0\)\(x=1\)

列表得:

\(x\) \((0, 1)\) \(1\) \((1,+\infty)\)
\(f'(x)\) \(+\) \(0\) \(-\)
\(f(x)\) \(\uparrow\) \(\downarrow\)

\(f(x)\)\((0, 1)\) 单调递增,在 \((1,+\infty)\) 单调递减


(2)由 \(b\ln a-a\ln b=a-b\) 得:

\(\displaystyle {\ln a\over a}-{\ln b\over b}={1\over b}-{1\over a}\)

\(\displaystyle {1\over a}(1-\ln {1\over a})={1\over b}(1-\ln {1\over b})\)

\(\displaystyle f({1\over a})=f({1\over b})\)

\(\because x\in(0, 1)\)\(x>0\wedge 1-\ln x>0\)

\(\therefore f(x)=x(1-\ln x)>0\)

\(x\in(1,+\infty)\) 时,令 \(f(x)=0\)\(x=e\)

\(\because a\neq b\)

\(\therefore \displaystyle {1\over a}\neq {1\over b}\)

不妨设 \(\displaystyle 0<{1\over a}<{1\over b}\)

\(\because f(x)\)\((0, 1)\) 单掉递增且恒正, \((1,+\infty)\) 单调递减且 \(f(e)=0\)

\(\therefore \displaystyle 0<{1\over a}<1<{1\over b}<e\)

很显然的一个极值点偏移

\(g(x)=f(x)-f(2-x), x\in(0, 1)\)

\(\therefore g'(x)=f'(x)+f'(2-x)=-\ln{x(2-x)}\)

\(\because x\in(0, 1)\)\(x(2-x)\in(0, 1)\)

\(\therefore g'(x)=-\ln {x(2-x)}>-\ln 1=0\)\(g(x)\)\((0, 1)\) 恒增

\(\therefore g(x)<g(1)=f(1)-f(2-1)=0\)

\(f(x)-f(2-x)<0\)

\(\therefore f(x)<f(2-x)\)

\(\because \displaystyle {1\over a}\in (0, 1)\)

\(\therefore \displaystyle f({1\over b})=f({1\over a})<f(2-{1\over a})\)

\(\displaystyle \because {1\over b},2-{1\over a}\in(1, e)\)\(f(x)\)\((1,e)\) 单调递减

\(\therefore \displaystyle {1\over b}>2-{1\over a}\)

\(\displaystyle {1\over a}+{1\over b}>2\)

\(h(x)=f(x)-f(e-x)=x-x\ln x-(e-x)+(e-x)\ln(e-x)=2x+x\ln{e-x\over x}+e\ln (e-x),x\in(0, 1)\)

\(\because \displaystyle x<1\)\(x<e-1\)\(\displaystyle x<{e\over 2}\)

\(\therefore \displaystyle e-x>1\)\(e-x>x\)

\(\therefore \displaystyle \ln (e-x)>\ln 1=0, \ln{e-x\over x}>\ln 1=0\)

\(\therefore h(x)>0\)\(f(x)>f(e-x),x\in (0, 1)\)

\(\therefore \displaystyle f({1\over b})=f({1\over a})>f(e-{1\over a})\)

\(\displaystyle \because {1\over b},2-{1\over a}\in(1, e)\)\(f(x)\)\((1,e)\) 单调递减

\(\therefore \displaystyle {1\over b}<e-{1\over a}\)

\(\therefore \displaystyle {1\over a}+{1\over b}<e\)

综上,\(\displaystyle 2<{1\over a}+{1\over b}<e\)

posted @ 2021-06-07 23:03  JustinRochester  阅读(1457)  评论(0编辑  收藏  举报