网络流-费用流zkw算法
基础费用流
进行SPFA每次对残余网络求最短路,记录前驱,然后跑这条增广路,更新答案,直到源点和汇点不连通位置
改良
我们可以类似dinic,在spfa求完每个点到源点的距离之后,再像dinic一样进行增广,这样就能多路增广,并且还可以加当前弧优化。
代码
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 5e3 + 5;
const int INF = 0x3f3f3f3f;
int n, m;
struct Edge{
int to, val, cost;
Edge *next, *ops;
Edge(int to, int val, int cost, Edge *next): to(to), val(val), cost(cost), next(next){}
};
Edge *head[MAXN];
void AddEdge(int u, int v, int w, int c) {
head[u] = new Edge(v, w, c, head[u]);
head[v] = new Edge(u, 0, -c, head[v]);
head[u]->ops = head[v]; head[v]->ops = head[u];
}
namespace zkw{
int s, t, ans, res;
int dis[MAXN];
bool vis[MAXN];
//Edge *cur[MAXN];
bool Spfa() {
memset(vis, false, sizeof vis);
memset(dis, 0x3f, sizeof dis);
deque<int> q;
q.push_back(s);
vis[s] = true; dis[s] = 0;
while (!q.empty()) {
int u = q.front(); q.pop_front(); vis[u] = false;
for (Edge *e = head[u]; e; e = e->next) {
int v = e->to;
if (e->val > 0 && dis[u] + e->cost < dis[v]) {
dis[v] = dis[u] + e->cost;
if (!vis[v]) {
vis[v] = true;
if (!q.empty() && dis[v] < dis[q.front()]) q.push_front(v);
else q.push_back(v);
}
}
}
}
return dis[t] < INF;
}
int Dfs(int u, int flow) {
if (u == t) {
vis[u] = true;
res += flow;
return flow;
}
int used = 0; vis[u] = true;
for (Edge *e = head[u]; e; e = e->next) {
int v = e->to;
if ((!vis[v] || v == t) && e->val && dis[u] + e->cost == dis[v]) {
int mi = Dfs(v, min(e->val, flow - used));
if (mi) {
e->val -= mi;
e->ops->val += mi;
ans += e->cost * mi;
used += mi;
}
if (used == flow) break;
}
}
return used;
}
void Work() {
res = 0; ans = 0;
while (Spfa()) {
vis[t] = true;
while (vis[t]) {
memset(vis, false, sizeof vis);
Dfs(s, INF);
}
}
}
}
int main() {
cin >> n >> m >> zkw :: s >> zkw :: t;
for (int i = 1; i <= m; i++) {
int u, v, w, c;
cin >> u >> v >> w >> c;
AddEdge(u, v, w, c);
}
zkw :: Work();
cout << zkw :: res << ' ' << zkw :: ans << endl;
return 0;
}