BigGAN: LARGE SCALE GAN TRAINING FORHIGH FIDELITY NATURAL IMAGE SYNTHESIS
BackGround
- GAN的训练对设置(结构、参数)过于敏感
Motivation
- 通过结合众多稳定GAN训练的方法来实现一个大型的稳定GAN
Model
Baseline:SAGAN[1]
Technique:
- Weight decay of G - 防止过拟合(仅在验证阶段使用)
- Orthogonal Initialization
- Truncation trick - resample z
- Ways to sample z - Bernoulli{0, 1} max(N(0, i), 0)
Reference
[1] Zhang, Han, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. "Self-Attention Generative Adversarial Networks." ArXiv:1805.08318 [Cs, Stat], June 14, 2019. http://arxiv.org/abs/1805.08318.