BigGAN: LARGE SCALE GAN TRAINING FORHIGH FIDELITY NATURAL IMAGE SYNTHESIS

BackGround

  1. GAN的训练对设置(结构、参数)过于敏感

 

Motivation

  1. 通过结合众多稳定GAN训练的方法来实现一个大型的稳定GAN

 

Model

Baseline:SAGAN[1]

 

Technique:

  1. Weight decay of G - 防止过拟合(仅在验证阶段使用)
  2. Orthogonal Initialization
  3. Truncation trick - resample z
  4. Ways to sample z - Bernoulli{0, 1} max(N(0, i), 0)

 

Reference

[1] Zhang, Han, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. "Self-Attention Generative Adversarial Networks." ArXiv:1805.08318 [Cs, Stat], June 14, 2019. http://arxiv.org/abs/1805.08318.

posted @ 2020-11-06 15:27  Junzhao  阅读(182)  评论(0编辑  收藏  举报