难缠的布隆过滤器,这次终于通透了

今天来聊一聊面试八股文:布隆过滤器。

说道布隆过滤器,就免不了说到缓存穿透

缓存穿透

在高并发下,查询一个并不存在的值时,缓存不会被命中,导致大量请求直接落到数据库。

数据库的响应能力肯定没有缓存大,出线这样的情况,一般是黑客攻击,拖慢了系统的响应速度。

头脑风暴

朴素的分析思路: 在缓存前加一道屏障:放置存在(可能存在)的查询键,屏蔽不可能存在的查询键,
业内一般使用布隆过滤器来做这个屏障。

布隆过滤器的实现过程

布隆过滤器内部维护了一个全为0的bit数组,几个hash函数(f1,f2)

假设有输入集合{N1,N2},哈希函数f1、f2

  1. 经过计算 f1(N1)=2, f2(N1)=5, 则将数组下表为2,5的位置标记为1:

  1. 同理计算f2(N1)=3, f2(N2)=4,则将数组下表为3,4的位置标记为1:

  1. 有第三个数N3,我们判断N3在不在集合{N1,N2}中, 就进行f1(N3)、f2(N3)的计算
  • 如果f1(N3),f2(N3)计算的值均落在上图红色区域, 则说明N3可能属于集合{N1,N2}中的一员
  • 如果f1(N3),f2(N3)计算的值有一个落在红色区域的外面,则说明N3一定不属于集合

布隆过滤器的设计原理

(这里是重点,再看不懂,私聊我)

数据库所有的键,经过一次哈希运算,收敛到(A,B)区间,

某个待查询的键K,如果经过同样的哈希运算,落在(A,B)区间,因为存在哈希碰撞,所以我们说K有可能属于数据库中所有的键中的一员;

但是如果该K经过哈希运算,没有落在收敛区间,则证明K一定不属于原数据库键。

那为什么要使用多个哈希函数?
因为经过一次哈希函数落在收敛区间,只能说该K有可能属于原数据库键,但是如果经过多个哈希函数,还是落到收敛区间,概率叠加,无形中增大了该K属于原数据库键的概率。

总体上看: 布隆过滤器是利用了哈希算法的单向收敛性+概率论

时间复杂度: 要判断N是否属于原查询键,只需要经过几次哈希运算,所以布隆过滤器判断的过程是很快的,

布隆过滤器的应用

很明显,布隆过滤器【认定某个键在集合中】存在误报, 经过上面的分析:误报率跟哈希碰撞和有几个哈希函数有关,

成熟的布隆过滤器,这些你都不需要考虑,只需要指定 ① 哈希结果的存储区 ②容量 ③误报率

package nuget
BloomFilter.NetCore 以内存存储哈希结果
BloomFilter.Redis.NetCore 以redis存储哈希结果
BloomFilter.EasyCaching.NetCore
using BloomFilter;
using System;
using System.Collections.Generic;

namespace BoomFilter
{
    class Program
    {
        static readonly IBloomFilter bf = FilterBuilder.Build(10000000, 0.03);
        static void Main(string[] args)
        {
            int size = 10000000;
            for (int i = 0; i < size; i++)
            {
                bf.Add(i);
            }

            var list = new List<int>();
            // 故意取100个不在布隆过滤器中的值,看下有多少值误报
            for(int i= size+1;i<size+100;i++)
            {
                if (bf.Contains(i))
                {
                    list.Add(i);
                }
            }
            Console.WriteLine($"误报的个数为:{list.Count}");
        }
    }
}

上面这个100个数字,肯定不在原集合,但是我们使用的布隆过滤器却认定有5个数字 在原集合,所以说【认定在 有误报】

总结

布隆过滤器是 哈希函数单向收敛和 概率论的完美结合,

从上面的分析看,解决缓存穿透,我们在Cache前面预热一个布隆过滤器,就可以阻止绝大部分非法的查询键。

注意,布隆过滤器对删除不友好,所以如果数据库键有大量变更,需要重建布隆过滤器。

posted @ 2021-07-05 08:16  码甲哥不卷  阅读(1683)  评论(4编辑  收藏  举报