bzoj3122 [SDOI2013]随机数生成器
给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\)
求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\)
\(0\leq a,\ b,\ t,\ P\leq10^9,\ P\) 为质数
BSGS
首先化式子,推得
\[X_k=a^{k-1}x+b\displaystyle\sum_{i=0}^{k-2}a_i
\]
因此
\[\begin{aligned}\displaystyle\sum_{i=0}^{k-2}a_i&\equiv\frac{t-a^{k-1}x}{b}\pmod P\\\frac{a^{k-1}-1}{a-1}&\equiv\frac{t-a^{k-1}x}{b}\pmod P\\a^{k-1}(b-x+ax)&\equiv at-t+b\pmod P\\a^{k-1}&\equiv\frac{at-t+b}{b-x+ax}\pmod P\end{aligned}
\]
所以上 \(BSGS\)
然而这题特判很恶心,不加特判 \(0\text{pts}\)
特判如下:
- \(x=t:ans=1\)
- \(a=1\)
- \(b=0:ans=-1\)
- \(b\neq0:ans=\frac{t-x}{b}+1\)
- \(a=0\)
- \(b=t:ans=2\)
- \(b\neq t:ans=-1\)
时间复杂度 \(O(T\sqrt P)\)
代码
#include <bits/stdc++.h>
using namespace std;
int P;
int qp(int a, int k) {
int res = bool(a);
for (; k; k >>= 1, a = 1ll * a * a % P) {
if (k & 1) res = 1ll * res * a % P;
}
return res % P;
}
int bsgs(int a, int b) {
if (!a && b) return -1;
map <int, int> s;
int sz = sqrt(P), inv_a = qp(a, P - 2), pw = qp(a, sz), cur = 1;
for (int i = 0; i <= sz; i++) {
s.insert(make_pair(1ll * b * cur % P, i)), cur = 1ll * cur * inv_a % P;
}
cur = 1;
map <int, int> :: iterator it;
for (int i = 0; i <= sz; i++, cur = 1ll * cur * pw % P) {
if ((it = s.find(cur)) != s.end()) {
return i * sz + (it -> second);
}
}
return -1;
}
int main() {
int Tests, a, b, x, t, A, B;
scanf("%d", &Tests);
while (Tests--) {
scanf("%d %d %d %d %d", &P, &a, &b, &x, &t);
a %= P, b %= P, x %= P, t %= P;
if (x == t) {
puts("1"); continue;
} else if (a == 1) {
if (!b) {
puts("-1"); continue;
}
printf("%d\n", 1ll * (t - x + P) * qp(b, P - 2) % P + 1);
continue;
} else if (!a) {
puts(b == t ? "2" : "-1");
continue;
}
A = a, B = 1ll * (1ll * a * t - t + b + P) % P * qp((b - x + 1ll * a * x + P) % P, P - 2) % P;
int ans = bsgs(A, B);
printf("%d\n", ~ans ? ans + 1 : ans);
}
return 0;
}