CF176E Archaeology
有一棵 \(n\) 个点的带权树,每个点都是黑色或白色,最初所有点都是白色的。有 \(m\) 个询问:
- 把点 \(x\) 从白色变成黑色
- 把点 \(x\) 从黑色变成白色
- 查询黑点的导出子树的边权和
\(1 \leq n,\ q \leq 10^5,\ 1\leq x\leq n\) 。
LCA
结论:
- 按照时间戳把所有黑点升序排序,累加相邻及首尾两点之间的路径长度,最后得到的结果恰好是所求答案的两倍
于是可以用一个数据结构按照时间戳递增的顺序维护黑点序列,算插/删点的贡献用 \(lca\) 维护
这个数据结构需要支持插入、求前驱后继,直接用 \(set\) 就吼辣
时间复杂度 \(O(n\log n)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define iter set <int> :: iterator
typedef long long ll;
const int maxn = 1e5 + 10;
ll ans, dis[maxn];
int n, m, tid[maxn], rk[maxn], h[maxn];
int sz[maxn], fa[maxn], dep[maxn], son[maxn], top[maxn];
set <int> seq;
struct edges {
int nxt, to, w;
} e[maxn << 1];
void addline(int u, int v, int w) {
static int cnt = 1;
e[++cnt] = edges{h[u], v, w}, h[u] = cnt;
}
int dfs1(int u, int f) {
fa[u] = f, dep[u] = dep[f] + 1;
for (int i = h[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != f) {
dis[v] = dis[u] + e[i].w;
sz[u] += dfs1(v, u);
if (sz[son[u]] < sz[v]) {
son[u] = v;
}
}
}
return ++sz[u];
}
void dfs2(int u, int tp) {
static int now;
top[u] = tp;
tid[u] = ++now, rk[now] = u;
if (son[u]) dfs2(son[u], tp);
for (int i = h[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa[u] && v != son[u]) {
dfs2(v, v);
}
}
}
ll lca(int u, int v) {
ll res = dis[u] + dis[v];
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
u = fa[top[u]];
} else {
v = fa[top[v]];
}
}
int _lca = dep[u] < dep[v] ? u : v;
return res - 2 * dis[_lca];
}
ll query(iter it) {
iter pre = it, nxt = it;
pre = it == seq.begin() ? seq.end() : it, pre--;
if (++nxt == seq.end()) nxt = seq.begin();
int l = rk[*pre], r = rk[*nxt], u = rk[*it];
return lca(l, u) + lca(u, r) - lca(l, r);
}
int main() {
scanf("%d", &n);
for (int i = 1, u, v, w; i < n; i++) {
scanf("%d %d %d", &u, &v, &w);
addline(u, v, w), addline(v, u, w);
}
dfs1(1, 0), dfs2(1, 1);
scanf("%d", &m);
iter it, tmp;
char c; int x;
while (m--) {
scanf("%s", &c);
if (c == '?') {
printf("%I64d\n", ans >> 1);
continue;
}
scanf("%d", &x);
if (c == '+') {
it = seq.insert(tid[x]).first;
if (seq.size() > 2) {
ans += query(it);
} else if (seq.size() == 2) {
tmp = it == seq.begin() ? ++it : seq.begin();
ans = lca(rk[*tmp], x) << 1;
}
} else {
it = seq.find(tid[x]);
if (seq.size() > 2) {
ans -= query(it);
} else if (seq.size() == 2) {
ans = 0;
}
seq.erase(tid[x]);
}
}
return 0;
}