RPC框架小结
为什么说要搞定微服务架构,先搞定RPC框架?
1. 为什么说要搞定微服务架构,先搞定RPC框架?
如果没有统一的服务框架,RPC框架,各个团队的服务提供方就需要各自实现一套序列化、反序列化、网络框架、连接池、收发线程、超时处理、状态机等“业务之外”的重复技术劳动,造成整体的低效。
所以,统一RPC框架把上述“业务之外”的技术劳动统一处理,是服务化首要解决的问题。
RPC框架能够让调用方“像调用本地函数一样调用远端的函数(服务)”。
2. RPC框架职责
通过上面的讨论,RPC框架要向调用方屏蔽各种复杂性,要向服务提供方也屏蔽各类复杂性:
1)调用方感觉就像调用本地函数一样
2)服务提供方感觉就像实现一个本地函数一样来实现服务
所以整个RPC框架又分为client部分与server部分,负责把整个非(1)(2)的各类复杂性屏蔽,这些复杂性就是RPC框架的职责。
再细化一些,
client端又包含:序列化、反序列化、连接池管理、负载均衡、故障转移、队列管理,超时管理、异步管理等等等等职责。
server端包含:服务端组件、服务端收发包队列、io线程、工作线程、序列化反序列化、上下文管理器、超时管理、异步回调等等等等职责。
微服务架构之RPC-client序列化细节
1. 为什么要进行序列化
工程师通常使用“对象”来进行数据的操纵,但当需要对数据进行存储(固化存储,缓存存储)或者传输(跨进程网络传输)时,“对象”就不这么好用了,往往需要把数据转化成连续空间的二进制字节流,一些典型的场景是:
1)数据库索引的磁盘存储:数据库的索引在内存里是b+树或者hash的格式,但这个格式是不能够直接存储到磁盘上的,所以需要把b+树或者hash转化为连续空间的二进制字节流,才能存储到磁盘上
2)缓存的KV存储:redis/memcache是KV类型的缓存,缓存存储的value必须是连续空间的二进制字节流,而不能够是User对象
3)数据的网络传输:socket发送的数据必须是连续空间的二进制字节流,也不能是对象
所谓序列化(Serialization),就是将“对象”形态的数据转化为“连续空间二进制字节流”形态数据的过程,以方便存储与传输。这个过程的逆过程叫做反序列化。
2. 怎么进行序列化
1)很容易想到的一个方法是xml(或者json)这类具有自描述特性的标记性语言
2)第二个方法是自己实现二进制协议来进行序列化,还是以上面的User对象为例,可以设计一个这样的通用协议:
(1)头4个字节表示序号
(2)序号后面的4个字节表示key的长度m
(3)接下来的m个字节表示key的值
(4)接下来的4个字节表示value的长度n
(5)接下来的n个字节表示value的值
(6)像xml一样递归下去,直到描述完整个对象
实际的序列化协议要考虑的细节远比这个多,例如:强类型的语言不仅要还原属性名,属性值,还要还原属性类型;复杂的对象不仅要考虑普通类型,还要考虑对象嵌套类型等。however,序列化的思路都是类似的。
3. 序列化协议要考虑什么因素
不管使用成熟协议xml/json,还是自定义二进制协议来序列化对象,序列化协议设计时要考虑哪些因素呢?
1)解析效率:这个应该是序列化协议应该首要考虑的因素,像xml/json解析起来比较耗时,需要解析doom树,二进制自定义协议解析起来效率就很高
2)压缩率,传输有效性:同样一个对象,xml/json传输起来有大量的xml标签,信息有效性低,二进制自定义协议占用的空间相对来说就小多了
3)扩展性与兼容性:是否能够方便的增加字段,增加字段后旧版客户端是否需要强制升级,都是需要考虑的问题,xml/json和上面的二进制协议都能够方便的扩展
4)可读性与可调试性:这个很好理解,xml/json的可读性就比二进制协议好很多
5)跨语言:上面的两个协议都是跨语言的,有些序列化协议是与开发语言紧密相关的,例如dubbo的序列化协议就只能支持Java的RPC调用
6)通用性:xml/json非常通用,都有很好的第三方解析库,各个语言解析起来都十分方便,上面自定义的二进制协议虽然能够跨语言,但每个语言都要写一个简易的协议客户端
7)欢迎大家补充…
4. 业内常见的序列化方式
1)xml/json:解析效率,压缩率都较差;扩展性、可读性、通用性较好
2)thrift:没有用过,欢迎大家补充
3)protobuf:Google出品,必属精品,各方面都不错,强烈推荐,属于二进制协议,可读性差了点,但也有类似的to-string协议帮助调试问题
4)Avro:没有用过,欢迎大家补充
5)CORBA:没有用过,欢迎大家补充
6)mc_pack:懂的同学就懂,不懂的就不懂了,09年用过,传说各方面都超越protobuf,懂行的同学可以说一下现状
7)…
RPC-client异步收发核心细节
1. RPC-client主要功能:
1)序列化反序列化的部分(上图中的1、4)
2)发送字节流与接收字节流的部分(上图中的2、3)
2. 客户端调用又分为同步调用与异步调用
同步调用的代码片段为:
Result = Add(Obj1, Obj2);// 得到Result之前处于阻塞状态
异步调用的代码片段为:
Add(Obj1, Obj2, callback);// 调用后直接返回,不等结果
处理结果通过回调得到:
callback(Result){// 得到处理结果后会调用这个回调函数
…
}
3. RPC-client同步调用
所谓同步调用,在得到结果之前,一直处于阻塞状态,会一直占用一个工作线程,上图简单的说明了一下组件、交互、流程步骤。
上图中的左边大框,就代表了调用方的一个工作线程。
左边粉色中框,代表了RPC-client组件。
右边橙色框,代表了RPC-server。
蓝色两个小框,代表了同步RPC-client两个核心组件,序列化组件与连接池组件。
白色的流程小框,以及箭头序号1-10,代表整个工作线程的串行执行步骤:
1)业务代码发起RPC调用,Result=Add(Obj1,Obj2)
2)序列化组件,将对象调用序列化成二进制字节流,可理解为一个待发送的包packet1
3)通过连接池组件拿到一个可用的连接connection
4)通过连接connection将包packet1发送给RPC-server
5)发送包在网络传输,发给RPC-server
6)响应包在网络传输,发回给RPC-client
7)通过连接connection从RPC-server收取响应包packet2
8)通过连接池组件,将conneciont放回连接池
9)序列化组件,将packet2范序列化为Result对象返回给调用方
10)业务代码获取Result结果,工作线程继续往下走
RPC框架需要支持负载均衡、故障转移、发送超时,这些特性都是通过连接池组件去实现的。
连接池组件
典型连接池组件对外提供的接口为:
int ConnectionPool::init(…);
Connection ConnectionPool::getConnection();
intConnectionPool::putConnection(Connection t);
【INIT】
和下游RPC-server(一般是一个集群),建立N个tcp长连接,即所谓的连接“池”
【getConnection】
从连接“池”中拿一个连接,加锁(置一个标志位),返回给调用方
【putConnection】
将一个分配出去的连接放回连接“池”中,解锁(也是置一个标志位)
如何实现负载均衡?
回答:连接池中建立了与一个RPC-server集群的连接,连接池在返回连接的时候,需要具备随机性。
如何实现故障转移?
回答:连接池中建立了与一个RPC-server集群的连接,当连接池发现某一个机器的连接异常后,需要将这个机器的连接排除掉,返回正常的连接,在机器恢复后,再将连接加回来。
如何实现发送超时?
回答:因为是同步阻塞调用,拿到一个连接后,使用带超时的send/recv即可实现带超时的发送和接收。
总的来说,同步的RPC-client的实现是相对比较容易的,序列化组件、连接池组件配合多工作线程数,就能够实现。还有一个问题,就是【“工作线程数设置多少最为合适?”】,这个问题在之前的文章中讨论过,此处不再深究。
4. PC-client异步回调
所谓异步回调,在得到结果之前,不会处于阻塞状态,理论上任何时间都没有任何线程处于阻塞状态,因此异步回调的模型,理论上只需要很少的工作线程与服务连接就能够达到很高的吞吐量。
上图中左边的框框,是少量工作线程(少数几个就行了)进行调用与回调。
中间粉色的框框,代表了RPC-client组件。
右边橙色框,代表了RPC-server。
蓝色六个小框,代表了异步RPC-client六个核心组件:上下文管理器,超时管理器,序列化组件,下游收发队列,下游收发线程,连接池组件。
白色的流程小框,以及箭头序号1-17,代表整个工作线程的串行执行步骤:
1)业务代码发起异步RPC调用,Add(Obj1,Obj2, callback)
2)上下文管理器,将请求,回调,上下文存储起来
3)序列化组件,将对象调用序列化成二进制字节流,可理解为一个待发送的包packet1
4)下游收发队列,将报文放入“待发送队列”,此时调用返回,不会阻塞工作线程
5)下游收发线程,将报文从“待发送队列”中取出,通过连接池组件拿到一个可用的连接connection
6)通过连接connection将包packet1发送给RPC-server
7)发送包在网络传输,发给RPC-server
8)响应包在网络传输,发回给RPC-client
9)通过连接connection从RPC-server收取响应包packet2
10)下游收发线程,将报文放入“已接受队列”,通过连接池组件,将conneciont放回连接池
11)下游收发队列里,报文被取出,此时回调将要开始,不会阻塞工作线程
12)序列化组件,将packet2范序列化为Result对象
13)上下文管理器,将结果,回调,上下文取出
14)通过callback回调业务代码,返回Result结果,工作线程继续往下走
如果请求长时间不返回,处理流程是:
15)上下文管理器,请求长时间没有返回
16)超时管理器拿到超时的上下文
17)通过timeout_cb回调业务代码,工作线程继续往下走
上下文管理器
为什么需要上下文管理器?
回答:由于请求包的发送,响应包的回调都是异步的,甚至不在同一个工作线程中完成,需要一个组件来记录一个请求的上下文,把请求-响应-回调等一些信息匹配起来。
如何将请求-响应-回调这些信息匹配起来?
这是一个很有意思的问题,通过一条连接往下游服务发送了a,b,c三个请求包,异步的收到了x,y,z三个响应包:
(1)怎么知道哪个请求包与哪个响应包对应?
(2)怎么知道哪个响应包与哪个回调函数对应?
回答:这是通过【请求id】来实现请求-响应-回调的串联的。
整个处理流程如上,通过请求id,上下文管理器来对应请求-响应-callback之间的映射关系:
1)生成请求id
2)生成请求上下文context,上下文中包含发送时间time,回调函数callback等信息
3)上下文管理器记录req-id与上下文context的映射关系,
4)将req-id打在请求包里发给RPC-server
5)RPC-server将req-id打在响应包里返回
6)由响应包中的req-id,通过上下文管理器找到原来的上下文context
7)从上下文context中拿到回调函数callback
8)callback将Result带回,推动业务的进一步执行
如何实现负载均衡,故障转移?
回答:与同步的连接池思路相同。不同在于,同步连接池使用阻塞方式收发,需要与一个服务的一个ip建立多条连接,异步收发,一个服务的一个ip只需要建立少量的连接(例如,一条tcp连接)。
如何实现超时发送与接收?
回答:同步阻塞发送,可以直接使用带超时的send/recv来实现,异步非阻塞的nio的网络报文收发,如何实现超时接收呢?(由于连接不会一直等待回包,那如何知晓超时呢?)这时,超时管理器就上场啦。
超时管理器
超时管理器,用于实现请求回包超时回调处理。
每一个请求发送给下游RPC-server,会在上下文管理器中保存req-id与上下文的信息,上下文中保存了请求很多相关信息,例如req-id,回包回调,超时回调,发送时间等。
超时管理器启动timer对上下文管理器中的context进行扫描,看上下文中请求发送时间是否过长,如果过长,就不再等待回包,直接超时回调,推动业务流程继续往下走,并将上下文删除掉。
如果超时回调执行后,正常的回包又到达,通过req-id在上下文管理器里找不到上下文,就直接将请求丢弃(因为已经超时处理过了)。
however,异步回调和同步回调相比,除了序列化组件和连接池组件,会多出上下文管理器,超时管理器,下游收发队列,下游收发线程等组件,并且对调用方的调用习惯有影响(同步->回调)。
异步回调能提高系统整体的吞吐量,具体使用哪种方式实现RPC-client,可以结合业务场景来选取(对时延敏感的可以选用同步,对吞吐量敏感的可以选用异步)。