数据库系列
一、一些常见的SQL实践
1). 负向条件查询不能使用索引
select * from order where status!=0 and stauts!=1
not in/not exists都不是好习惯
可以优化为in查询:
select * from order where status in(2,3)
2). 前导模糊查询不能使用索引
select * from order where desc like '%XX'
而非前导模糊查询则可以:
select * from order where desc like 'XX%'
3). 数据区分度不大的字段不宜使用索引
select * from user where sex=1
原因:性别只有男,女,每次过滤掉的数据很少,不宜使用索引。
经验上,能过滤80%数据时就可以使用索引。对于订单状态,如果状态值很少,不宜使用索引,如果状态值很多,能够过滤大量数据,则应该建立索引。
4). 在属性上进行计算不能命中索引
select * from order where YEAR(date) < = '2017'
即使date上建立了索引,也会全表扫描,可优化为值计算:
select * from order where date < = CURDATE()
或者:
select * from order where date < = '2017-01-01'
二、并非周知的SQL实践
5). 如果业务大部分是单条查询,使用Hash索引性能更好,例如用户中心
select * from user where uid=?
select * from user where login_name=?
原因:
B-Tree索引的时间复杂度是O(log(n))
Hash索引的时间复杂度是O(1)
6). 允许为null的列,查询有潜在大坑
单列索引不存null值,复合索引不存全为null的值,如果列允许为null,可能会得到“不符合预期”的结果集
select * from user where name != 'shenjian'
如果name允许为null,索引不存储null值,结果集中不会包含这些记录。
所以,请使用not null约束以及默认值。
7). 复合索引最左前缀,并不是值SQL语句的where顺序要和复合索引一致
用户中心建立了(login_name, passwd)的复合索引
select * from user where login_name=? and passwd=?
select * from user where passwd=? and login_name=?
都能够命中索引
select * from user where login_name=?
也能命中索引,满足复合索引最左前缀
select * from user where passwd=?
不能命中索引,不满足复合索引最左前缀
8). 使用ENUM而不是字符串
ENUM保存的是TINYINT,别在枚举中搞一些“中国”“北京”“技术部”这样的字符串,字符串空间又大,效率又低。
三、小众但有用的SQL实践
9). 如果明确知道只有一条结果返回,limit 1能够提高效率
select * from user where login_name=?
可以优化为:
select * from user where login_name=? limit 1
原因:
你知道只有一条结果,但数据库并不知道,明确告诉它,让它主动停止游标移动
10). 把计算放到业务层而不是数据库层,除了节省数据的CPU,还有意想不到的查询缓存优化效果
select * from order where date < = CURDATE()
这不是一个好的SQL实践,应该优化为:
$curDate = date('Y-m-d');
$res = mysql_query(
'select * from order where date < = $curDate');
原因:
释放了数据库的CPU
多次调用,传入的SQL相同,才可以利用查询缓存
11). 强制类型转换会全表扫描
select * from user where phone=13800001234
你以为会命中phone索引么?大错特错了,这个语句究竟要怎么改?
末了,再加一条,不要使用select *(潜台词,文章的SQL都不合格 =_=),只返回需要的列,能够大大的节省数据传输量,与数据库的内存使用量哟。
转自公众号:架构师之路 http://mp.weixin.qq.com/s/dGcgts4NNTmVQNRT-j2MZw
一:union all 肯定是能够命中索引的
select * from order where status=0
union all
select * from order where status=1
说明:
直接告诉MySQL怎么做,MySQL耗费的CPU最少
程序员并不经常这么写SQL(union all)
二:简单的in能够命中索引
select * from order where status in (0,1)
说明:
让MySQL思考,查询优化耗费的cpu比union all多,但可以忽略不计
程序员最常这么写SQL(in),这个例子,最建议这么写
三:对于or,新版的MySQL能够命中索引
select * from order where status=0 or status=1
说明:
让MySQL思考,查询优化耗费的cpu比in多,别把负担交给MySQL
不建议程序员频繁用or,不是所有的or都命中索引
对于老版本的MySQL,建议查询分析下
四、对于!=,负向查询肯定不能命中索引
select * from order where status!=2
说明:
全表扫描,效率最低,所有方案中最慢
禁止使用负向查询
转自公众号:架构师之路 http://mp.weixin.qq.com/s/ZWez27EmVw_u7GzNbvXuYw
聚集索引(clustered index):聚集索引决定数据在磁盘上的物理排序,一个表只能有一个聚集索引,一般用primary key来约束。
举例:t_user场景中,uid上的索引。
非聚集索引(non-clustered index):它并不决定数据在磁盘上的物理排序,索引上只包含被建立索引的数据,以及一个行定位符row-locator,这个行定位符,可以理解为一个聚集索引物理排序的指针,通过这个指针,可以找到行数据。
举例,查找年轻MM的业务需求:
select uid from t_user where age > 18 and age < 26;
age上建立的索引,就是非聚集索引。
联合索引:多个字段上建立的索引,能够加速复核查询条件的检索
举例,登录业务需求:
select uid, login_time from t_user where
login_name=? and passwd=?
可以建立(login_name, passwd)的联合索引。
联合索引能够满足最左侧查询需求,例如(a, b, c)三列的联合索引,能够加速a | (a, b) | (a, b, c) 三组查询需求。
这也就是为何不建立(passwd, login_name)这样联合索引的原因,业务上几乎没有passwd的单条件查询需求,而有很多login_name的单条件查询需求。
提问:
select uid, login_time from t_user where
passwd=? and login_name=?
能否命中(login_name, passwd)这个联合索引?
回答:可以,最左侧查询需求,并不是指SQL语句的写法必须满足索引的顺序(这是很多朋友的误解)
索引覆盖:被查询的列,数据能从索引中取得,而不用通过行定位符row-locator再到row上获取,即“被查询列要被所建的索引覆盖”,这能够加速查询速度。
举例,登录业务需求:
select uid, login_time from t_user where
login_name=? and passwd=?
可以建立(login_name, passwd, login_time)的联合索引,由于login_time已经建立在索引中了,被查询的uid和login_time就不用去row上获取数据了,从而加速查询。
末了多说一句,登录这个业务场景,login_name具备唯一性,建这个单列索引就好。
转自公众号:架构师之路 http://mp.weixin.qq.com/s/4W4iVOZHdMglk0F_Ikao7A
58到家数据库30条军规解读
一、基础规范
(1)必须使用InnoDB存储引擎
解读:支持事务、行级锁、并发性能更好、CPU及内存缓存页优化使得资源利用率更高
(2)必须使用utf8mb4字符集,utf8mb4是utf8的超集,emoji表情以及部分不常见汉字在utf8下会表现为乱码,故需要升级至utf8mb4。
解读:万国码,无需转码,无乱码风险
(3)数据表、数据字段必须加入中文注释
解读:N年后谁tm知道这个r1,r2,r3字段是干嘛的
(4)禁止使用存储过程、视图、触发器、Event
解读:高并发大数据的互联网业务,架构设计思路是“解放数据库CPU,将计算转移到服务层”,并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现“增机器就加性能”。数据库擅长存储与索引,CPU计算还是上移吧
(5)禁止存储大文件或者大照片
解读:为何要让数据库做它不擅长的事情?大文件和照片存储在文件系统,数据库里存URI多好
二、命名规范
(6)只允许使用内网域名,而不是ip连接数据库
不只是数据库,缓存(memcache、redis)的连接,服务(service)的连接都必须使用内网域名,机器迁移/平滑升级/运维管理…太多太多的好处,如果朋友你还是采用ip直连的,赶紧升级到内网域名吧。
(7)线上环境、开发环境、测试环境数据库内网域名遵循命名规范
业务名称:xxx
线上环境:dj.xxx.db
开发环境:dj.xxx.rdb
测试环境:dj.xxx.tdb
从库在名称后加-s标识,备库在名称后加-ss标识
线上从库:dj.xxx-s.db
线上备库:dj.xxx-sss.db
(8)库名、表名、字段名:小写,下划线风格,不超过32个字符,必须见名知意,禁止拼音英文混用
(9)表名t_xxx,非唯一索引名idx_xxx,唯一索引名uniq_xxx
三、表设计规范
(10)单实例表数目必须小于500
(11)单表列数目必须小于30
(12)表必须有主键,例如自增主键
解读:
a)主键递增,数据行写入可以提高插入性能,可以避免page分裂,减少表碎片提升空间和内存的使用
b)主键要选择较短的数据类型, Innodb引擎普通索引都会保存主键的值,较短的数据类型可以有效的减少索引的磁盘空间,提高索引的缓存效率
c) 无主键的表删除,在row模式的主从架构,会导致备库夯住
(13)禁止使用外键,如果有外键完整性约束,需要应用程序控制
解读:外键会导致表与表之间耦合,update与delete操作都会涉及相关联的表,十分影响sql 的性能,甚至会造成死锁。高并发情况下容易造成数据库性能,大数据高并发业务场景数据库使用以性能优先
四、字段设计规范
(14)必须把字段定义为NOT NULL并且提供默认值
解读:
a)null的列使索引/索引统计/值比较都更加复杂,对MySQL来说更难优化
b)null 这种类型MySQL内部需要进行特殊处理,增加数据库处理记录的复杂性;同等条件下,表中有较多空字段的时候,数据库的处理性能会降低很多
c)null值需要更多的存储空,无论是表还是索引中每行中的null的列都需要额外的空间来标识
d)对null 的处理时候,只能采用is null或is not null,而不能采用=、in、<、<>、!=、not in这些操作符号。如:where name!=’shenjian’,如果存在name为null值的记录,查询结果就不会包含name为null值的记录
(15)禁止使用TEXT、BLOB类型
解读:会浪费更多的磁盘和内存空间,非必要的大量的大字段查询会淘汰掉热数据,导致内存命中率急剧降低,影响数据库性能
(16)禁止使用小数存储货币
解读:使用整数吧,小数容易导致钱对不上。使用“分”作为单位,这样数据库里就是整数了。
(17)必须使用varchar(20)存储手机号
解读:
a)涉及到区号或者国家代号,可能出现+-()
b)手机号会去做数学运算么?
c)varchar可以支持模糊查询,例如:like“138%”
(18)禁止使用ENUM,可使用TINYINT代替
解读:
a)增加新的ENUM值要做DDL操作
b)ENUM的内部实际存储就是整数,你以为自己定义的是字符串?
五、索引设计规范
(19)单表索引建议控制在5个以内
(20)单索引字段数不允许超过5个
解读:字段超过5个时,实际已经起不到有效过滤数据的作用了
(21)禁止在更新十分频繁、区分度不高的属性上建立索引
解读:
a)更新会变更B+树,更新频繁的字段建立索引会大大降低数据库性能
b)“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似
(22)建立组合索引,必须把区分度高的字段放在前面
解读:能够更加有效的过滤数据
六、SQL使用规范
(23)禁止使用SELECT *,只获取必要的字段,需要显示说明列属性
解读:
a)读取不需要的列会增加CPU、IO、NET消耗
b)不能有效的利用覆盖索引
c)使用SELECT *容易在增加或者删除字段后出现程序BUG
(24)禁止使用INSERT INTO t_xxx VALUES(xxx),必须显示指定插入的列属性
解读:容易在增加或者删除字段后出现程序BUG
(25)禁止使用属性隐式转换
解读:SELECT uid FROM t_user WHERE phone=13812345678 会导致全表扫描,而不能命中phone索引,猜猜为什么?(这个线上问题不止出现过一次)
(26)禁止在WHERE条件的属性上使用函数或者表达式
解读:SELECT uid FROM t_user WHERE from_unixtime(day)>='2017-02-15' 会导致全表扫描
正确的写法是:SELECT uid FROM t_user WHERE day>= unix_timestamp('2017-02-15 00:00:00')
(27)禁止负向查询,以及%开头的模糊查询
解读:
a)负向查询条件:NOT、!=、<>、!<、!>、NOT IN、NOT LIKE等,会导致全表扫描
b)%开头的模糊查询,会导致全表扫描
(28)禁止大表使用JOIN查询,禁止大表使用子查询
解读:会产生临时表,消耗较多内存与CPU,极大影响数据库性能
(29)禁止使用OR条件,必须改为IN查询
解读:旧版本Mysql的OR查询是不能命中索引的,即使能命中索引,为何要让数据库耗费更多的CPU帮助实施查询优化呢?
(30)应用程序必须捕获SQL异常,并有相应处理
转自公众号:架构师之路 http://mp.weixin.qq.com/s/4-PhkDYeiNmY-m0usUGYQw