互联网架构 高可用和高并发 (转)

一、什么是高并发

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

高并发相关常用的一些指标:

响应时间(Response Time):系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。

吞吐量(Throughput):单位时间内处理的请求数量。

QPS(Query Per Second):每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。

并发用户数:同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。

 

二、如何提升系统的并发能力

互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。

垂直扩展:提升单机处理能力。垂直扩展的方式又有两种:

(1)增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;

(2)提升单机架构性能,例如:使用Cache来减少IO次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;

在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。 

不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。

 

水平扩展:只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。

 

三、常见的互联网分层架构


常见互联网分布式架构如上,分为:

(1)客户端层:典型调用方是浏览器browser或者手机应用APP

(2)反向代理层:系统入口,反向代理

(3)站点应用层:实现核心应用逻辑,返回html或者json

(4)服务层:如果实现了服务化,就有这一层

(5)数据-缓存层:缓存加速访问存储

(6)数据-数据库层:数据库固化数据存储

整个系统各层次的水平扩展,又分别是如何实施的呢?

 

四、分层水平扩展架构实践

反向代理层的水平扩展


反向代理层的水平扩展,是通过“DNS轮询”实现的:dns-server对于一个域名配置了多个解析ip,每次DNS解析请求来访问dns-server,会轮询返回这些ip。

当nginx成为瓶颈的时候,只要增加服务器数量,新增nginx服务的部署,增加一个外网ip,就能扩展反向代理层的性能,做到理论上的无限高并发。

 

站点层的水平扩展


站点层的水平扩展,是通过“nginx”实现的。通过修改nginx.conf,可以设置多个web后端。

当web后端成为瓶颈的时候,只要增加服务器数量,新增web服务的部署,在nginx配置中配置上新的web后端,就能扩展站点层的性能,做到理论上的无限高并发。

 

服务层的水平扩展


服务层的水平扩展,是通过“服务连接池”实现的。

站点层通过RPC-client调用下游的服务层RPC-server时,RPC-client中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在RPC-client处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。 

数据层的水平扩展

在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。

互联网数据层常见的水平拆分方式有这么几种,以数据库为例:

按照范围水平拆分


每一个数据服务,存储一定范围的数据,上图为例:

user0库,存储uid范围1-1kw

user1库,存储uid范围1kw-2kw

这个方案的好处是:

(1)规则简单,service只需判断一下uid范围就能路由到对应的存储服务;

(2)数据均衡性较好;

(3)比较容易扩展,可以随时加一个uid[2kw,3kw]的数据服务;

不足是:

(1)      请求的负载不一定均衡,一般来说,新注册的用户会比老用户更活跃,大range的服务请求压力会更大;

 

按照哈希水平拆分


每一个数据库,存储某个key值hash后的部分数据,上图为例:

user0库,存储偶数uid数据

user1库,存储奇数uid数据

这个方案的好处是:

(1)规则简单,service只需对uid进行hash能路由到对应的存储服务;

(2)数据均衡性较好;

(3)请求均匀性较好;

不足是:

(1)不容易扩展,扩展一个数据服务,hash方法改变时候,可能需要进行数据迁移;

 

这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。

通过水平拆分扩展数据库性能:

(1)每个服务器上存储的数据量是总量的1/n,所以单机的性能也会有提升;

(2)n个服务器上的数据没有交集,那个服务器上数据的并集是数据的全集;

(3)数据水平拆分到了n个服务器上,理论上读性能扩充了n倍,写性能也扩充了n倍(其实远不止n倍,因为单机的数据量变为了原来的1/n);

通过主从同步读写分离扩展数据库性能:

(1)每个服务器上存储的数据量是和总量相同;

(2)n个服务器上的数据都一样,都是全集;

(3)理论上读性能扩充了n倍,写仍然是单点,写性能不变;

 

缓存层的水平拆分和数据库层的水平拆分类似,也是以范围拆分和哈希拆分的方式居多,就不再展开。

 

转自公众号:架构师之路   http://mp.weixin.qq.com/s/AMPIwgParjbLUBuCxUCYmw

 

一、什么是高可用

高可用HAHigh Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。

假设系统一直能够提供服务,我们说系统的可用性是100%。

如果系统每运行100个时间单位,会有1个时间单位无法提供服务,我们说系统的可用性是99%。

很多公司的高可用目标是4个9,也就是99.99%,这就意味着,系统的年停机时间为8.76个小时。

 

二、如何保障系统的高可用

我们都知道,单点是系统高可用的大敌,单点往往是系统高可用最大的风险和敌人,应该尽量在系统设计的过程中避免单点。方法论上,高可用保证的原则是“集群化”,或者叫“冗余”:只有一个单点,挂了服务会受影响;如果有冗余备份,挂了还有其他backup能够顶上。

保证系统高可用,架构设计的核心准则是:冗余。

有了冗余之后,还不够每次出现故障需要人工介入恢复势必会增加系统的不可服务实践。所以,又往往是通过“自动故障转移”来实现系统的高可用。

接下来我们看下典型互联网架构中,如何通过冗余+自动故障转移来保证系统的高可用特性。

 

三、总结

高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。

方法论上,高可用是通过冗余+自动故障转移来实现的。

整个互联网分层系统架构的高可用,又是通过每一层的冗余+自动故障转移来综合实现的,具体的:

(1)【客户端层】到【反向代理层】的高可用,是通过反向代理层的冗余实现的,常见实践是keepalived + virtual IP自动故障转移

(2)【反向代理层】到【站点层】的高可用,是通过站点层的冗余实现的,常见实践是nginx与web-server之间的存活性探测与自动故障转移

(3)【站点层】到【服务层】的高可用,是通过服务层的冗余实现的,常见实践是通过service-connection-pool来保证自动故障转移

(4)【服务层】到【缓存层】的高可用,是通过缓存数据的冗余实现的,常见实践是缓存客户端双读双写,或者利用缓存集群的主从数据同步与sentinel保活与自动故障转移;更多的业务场景,对缓存没有高可用要求,可以使用缓存服务化来对调用方屏蔽底层复杂性

(5)【服务层】到【数据库“读”】的高可用,是通过读库的冗余实现的,常见实践是通过db-connection-pool来保证自动故障转移

(6)【服务层】到【数据库“写”】的高可用,是通过写库的冗余实现的,常见实践是keepalived + virtual IP自动故障转移

 

转自公众号:架构师之路  http://mp.weixin.qq.com/s/7nfSvxZ4vJAxpIN5rCdaCw

posted @ 2018-04-17 14:41  Jtianlin  阅读(366)  评论(0编辑  收藏  举报